

Mackenzie Mazur, Lisa Kerr, and Steve Cadrin

Gulf of Maine Research Institute

Science. Education. Community.

Acknowledgements

 Development of MSE architecture by NOAA COCA Project Team: Lisa Kerr, Samuel Truesdell, Andrew Pershing, Ashley Weston, Steve Cadrin, Gavin Fay, Jonathan Cummings, Sarah Gaichas, Min-Yang Lee, and Anna Birkenbach

Outline

- 1. Rationale
- 2. Objectives
- 3. Simulation tool
- 4. Research questions
- 5. Approach
- 6. Preliminary results
- 7. Next steps

New England Groundfish

- Performance of the current groundfish management procedure and possible alternatives have not been simulation tested.
 - Groundfish stocks at very different stock status levels.
 - Changes with policy since implementation of ABC control rule.
 - Issues with management performance.

Retrospective patterns

- Several New England groundfish assessments have major retrospective patterns (inconsistencies of recent estimates after adding another year of data to the assessment)
 - Large source of uncertainty
 - May be caused by not accounting for changes in stock dynamics
 - Can lead to inappropriate fishery management

Objective

The goal of this analysis is to evaluate the performance of alternative harvest control rules for groundfish species using a management strategy evaluation model framework.

Objectives:

- 1. Development of a suite of groundfish operating models that span a range of conditions.
- 2. Mis-specification of operating and estimation models to generate retrospective patterns.
- 3. Design and simulation testing of alternative HCRs.

Size/age composition

This is the same closed-loop modeling framework used in Management Strategy Evaluation.

Research Questions

- How do alternative harvest control rule perform under characteristic conditions of groundfish stocks?
 - Stock status: overfished and overfishing is occurring.
 - Stock status: not overfished and no overfishing.
 - Stock assessment misspecification and retrospective patterns.
- When retrospective patterns exist, do rho-adjustments result in better performance than no rho-adjustments?

1. Groundfish operating models that span a range of conditions

Overfished and undergoing overfishing: Gulf of Maine cod

- -Base case (constant natural mortality and moderate productivity)
- -Increased natural mortality
- -Low productivity

Not overfished or undergoing overfishing:
Georges Bank haddock

-Base case

- 2. Mis-specification of operating and estimation models to generate retrospective patterns
- Incorrect natural mortality assumption
- Incorrect observation of catch
- Incorrect observation of recruitment events

- 3. Emulate current groundfish stock assessment methods
- Two-year projections

Rho-adjustments

4. Design and simulation testing of alternative HCRs

1 Ramped HCR

Fishery management reference points

75% Fmsy

Note: The control of the control o

Stock size

Target catch determined from P*

3 Step in fishing mortality HCR

with constraint on catch variation from year to year

All HCRs will have a minimum catch constraint.

Preliminary results

What happens when we assume constant natural mortality when

it's increasing?

- =Cod base case
- =Cod natural mortality misspecification
- =Observed
- =Estimated

Preliminary results: Retrospective

Gulf of Maine
Research Institute

patterns

Mohn's Rho= 0.21

Mohn's Rho= -0.25

Preliminary results

What happens when we apply a rho adjustment?

Preliminary Summary

- Ability to simulate different groundfish issues/conditions
- Ability to produce retrospective patterns with stock assessment misspecifications
- Ability to compare effects of misspecifications, projections, rho-adjustments, and HCRs

Next steps

- Simulate other scenarios
- Visualizing results
- Make P* estimation more efficient
- Outreach
- Advisory panel meeting January 2021

Tradeoff Visualization Idea

Thank you and Questions?

