

State of the Ecosystem Report: Georges Bank and Gulf of Maine

NOAA FISHERIES

Northeast Fisheries Science Center Sean Hardison, reporting on behalf of many Northeast Fisheries Science Center contributors

New England Fishery Management Council 17 April 2018

State of the Ecosystem report, 2017

Background:

- SOE project began in 2014
- Built upon yearly with feedback from NEFMC and MAFMC
- Similar docs in other regions

Objectives:

- Provide relevant contextual information regarding ecosystem processes
- Accessible to general audiences familiar with fishing

State of the Ecosystem - Gulf of Maine and Georges Bank

Ecosystem Dynamics and Assessment Branch, Northeast Fisheries Science Center
April 06, 2017

The purpose of this report is to provide ecosystem-scale information for fishery managers to consider along with existing species-scale analyses. An overview of ecosystem relationships as represented by a conceptual model helps place more detailed species-level management in context by highlighting relationships between focal species groups, managed human activities, environmental drivers, habitats, and key ecological links. The activities link to high level strategic management objectives (described next). Many components of the conceptual model are represented by indicators in this report, and key paths connecting components and objectives are highlighted.

Figure 1: Gulf of Maine and Georges Bank Ecosystems

Current revision: Pushing for synthesis

Reduce abstraction of ecosystem-scale processes

Greater focus on synthesis across indicators and regional specificity

Furthering collaboration

State of the Ecosystem

GEORGES BANK & GULF OF MAINE

FOCAL COMPONENTS

Protected Species
Forage Fish
Groundfish
Fished Invertebrates

SUPPORTING COMPONENTS

Zooplankton
Primary Production
Benthos
Detritus and Bacteria**
Jellyfish**
Mid-Atlantic Groundfish**

MARINE COMMUNITY

Communities Institutions Organizations Technology Infrastructure

HUMAN ACTIVITIES

Commercial Fisheries Recreational Fisheries Tourism*

OBJECTIVES

Seafood Production
Recreational Opportunities
Profits
Employment
Cultural Practices and

Attachments

MARINE HABITAT

Pelagic Seafloor Demersal Nearshore Freshwater and Estuarine*

ENVIRONMENT

ENVIRONMENTTidal Forcing

Water Temperature
Salinity
Source Water
Stratification
Air Temperature
Winds
Precipitation
Flooding*
River Flow*

Freshwater Inputs*

- * Gulf of Maine only
- ** Georges Bank only

Objectives and Indicators

Objective Categories	Indicators reported here		
Seafood production	Landings by feeding guild		
Profits	Revenue by feeding guild		
Recreation	Number of anglers and trips; recreational catch		
Stability	Diversity indices (fishery and species)		
Social-Cultural	Commercial and recreational reliance; social vulnerability		
Biomass	Biomass or abundance by feeding guild from surveys		
Productivity	Condition and recruitment of NEFMC managed species		
Trophic structure	Relative biomass of feeding guilds, primary productivity		
Habitat	Thermal habitat projections, estimated habitat occurrence		

Pages 2-3 synthesize key results

Time series approach for SOE 2018

Updated functional groups

Group	N species	Major species in the group
A: Apex predator (Highest trophic level)	4	shark (Unc.), swordfish, yellowfin and bluefin tuna
B: Piscivore (Eat fish)	23	monkfish, winter and thorny skates, silver and offshore hake, Atlantic cod, halibut, fourspot flounder, spiny dogfish, summer flounder, bluefish, striped bass, weakfish
C: Planktivore (Eat plankton)	16	Atlantic herring, butterfish, Atlantic mackerel, menhaden, river herrings, shad, white hake, longfin and shortfin squids, searobins,
E: Benthivores (Eat bottom dwellers)	25	sculpin, lumpfish lobster, haddock, yellowtail, winter, and witch flounders, barndoor skate, ocean pout, black sea bass, scup, tilefish, tautog, cunner,
F: Benthos (Filter feeders)	9	blue crab, red crab, other crabs scallops, surfclam, quahog, mussels, whelks, conchs, sand dollars and urchins

Single species objectives

The NEFMC is meeting objectives at the managed species level for 15 out of 38 stocks

Stocks with **high F** and **low B** include Cape Cod/GOM/SNE yellowtail flounder, S red hake, and GOM cod

Seafood production objectives

Proportion managed by NEFMC

All landings figures show proportion of landings managed by NEFMC as well as total commercial landings

Table below shows proportion of managed stocks landings and revenue in 2016

Groups	GOM Landings	GB Landings	GOM Revenue	GB Revenue
Piscivore	0.98	0.98	0.93	0.91
Planktivore	0.88	0.90	0.89	0.26
Benthivore	0.05	0.42	0.03	0.77
Benthos	0.30	0.30	0.71	0.85

Seafood production objective - GOM

Benthos landings show no long term trend

Managed landings of both piscivores and planktivores show long-term decreases

Total commercial landings and NEFMC managed species landings

Seafood production objective - GB

Benthos landings show no long term trend

Managed landings of both piscivores and benthivores show long-term decreases

Profits objective - GOM

Bennet indicator

Compares revenue differences caused by changing quantities of landings and prices

For each year, we calculate a volume indicator, a price indicator, and implicit revenue change

Baseline value for comparison is the long-term average

Profits objective - GB

Cyclical pattern of revenue change compared to average

Revenue decreases caused by lower volumes rather than prices

Positive price growth for most years helped offset negative volume changes

-200

-300 -

1970

1980

Feeding guild breakdown in report

1990

YEAR

2000

2010

Profits objective

Total revenue by NEFMC managed species (red) ranged from 3-93% of total revenue from commercial fishing (black)

Stability objective

Stability is addressed with indices of commercial fleet and species revenue diversity

All indices show declines in New England

Could indicate a decrease in the stability of the system

Recreation objective

Many communities around Cape Cod are dependent on recreational fisheries

Recent declines in both number of trips and number of anglers

Long-term declines in recreational landings

Socio-cultural objective

Profits/Socio-cultural objectives - HABs

At least 30 shellfish bed closures in New England due to threat of paralytic shellfish poisoning between 2007-2016

Recent increase in lateseason *Pseudonitzchia* blooms

Protected species

Recent harbor porpoise bycatch is among lowest in time series

Likely due to increased compliance and reduced fishing efforts

North Atlantic right whale population is declining

17 right whale deaths reported during 2017

1990

1995

2000

2005

Year

2010

2015

250

Biomass objective - GOM

Survey data show significant biomass increases of planktivores for both fall and spring surveys

Fall survey data show significant long-term increases across feeding guilds

Biomass objective - GB

Biomass in Georges Bank shows significant increases across feeding guilds and survey seasons, except for spring survey piscivores

Biomass objective – Community diversity

Species composition measured through Shannon diversity of planktonic larvae

Slight decline in spring larval diversity in past decade

Possibly indicative of species shifts and changes in spawn timing

Habitat/species distribution objective

Sea surface temperature

Long-term increases in seasurface temperatures across northeast continental shelf

Relative to 1982-2017, GOM SSTs were well above the mean in 2017

GB SSTs were below mean for most of 2017

High spatial variability

2017 SST anomaly for winter (a), fall (b), spring (c) and summer (d)

Sea surface temperature

Trophic structure objective – Phytoplankton

Copepod size index and PP

Primary productivity correlated with copepod body size

Trophic structure objective – Zooplankton GOM

Changes in *Calanus* abundance can affect feeding habits of North Atlantic right whale

In GOM, recent increases in small-bodied *Pseudocalanus* spp. abundance; no significant changes in *Calanus*

Trophic structure objective – Zooplankton GB

Pseudocalanus spp. abundance in Georges Bank shows longterm decline

Calanus abundance has been at or below mean abundance since 2008

Productivity objective – Groundfish condition

vellowtail flounder MAB, F vellowtail flounder GOM, M yellowtail flounder GB, M vellowtail flounder GB. F witch flounder All winter flounder MAB, F winter flounder GOM, M winter flounder GOM, F winter flounder GB, M winter flounder GB, F windowpane flounder NE, M windowpane flounder NE, F windowpane flounder MAB, F thorny skate All spotted hake All, M spotted hake All, F spiny dogfish All, M spiny dogfish All, F silver hake NE, M silver hake NE. F. silver hake MAB, M sea raven All red hake NE, M red hake NE, F pollock All ocean pout All haddock GOM goosefish NE goosefish MAB fourspot flounder All, M Atlantic herring All, M Atlantic herring All, F American plaice All acadian redfish All, M acadian redfish All, F

Depicts fish weight-perlength

Groundfish productivity declined after 2000, but is showing signs of recovery

Poor condition could reflect poor larval feeding conditions during these years

Productivity objective - Recruitment

Figures show small fish per large fish biomass

No clear trends across GOM and GB, but decline may be occurring in MAB

Next steps

New IEA website incoming

Accessible data for all indicators

Analyses, projects, and collaborations hosted here

Next steps - SOE 2018-2019

MAFMC recommendations

Direct relationships between productivity and fish biomass?
Greater focus on phytoplankton size fractionation
Incorporation of wind farm locations on maps
Greater focus on FW input, alkalinity, and bottom temperatures

NEFMC recommendations?

What would you like to see in this report?
How can we better support NEFMC management efforts?

Moving towards a more actionable product

