
Scallop PDT

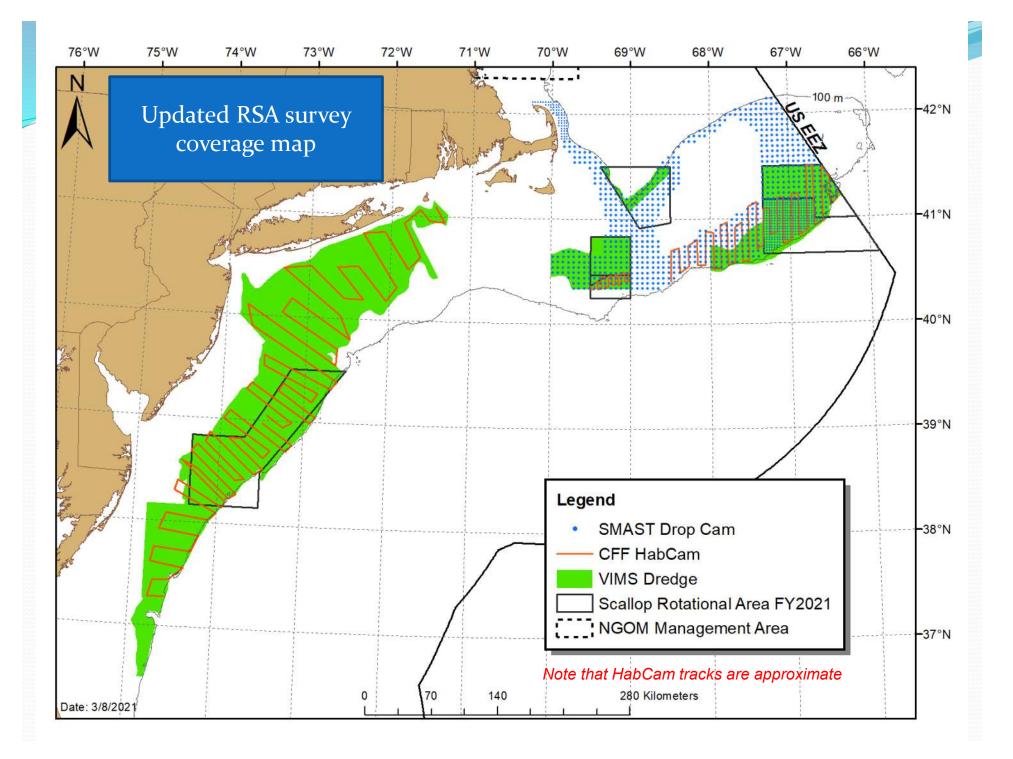
September 1, 2021 GoToMeeting

Welcome & Announcements

- Thank you: Survey Groups and Presenters
- Working, technical meeting of PDT: Joint PDT/AP and Committee meet next month.
 - Survey groups will be participating with the PDT.
- Please mute when you are not speaking.
- Turn on your camera when speaking, if you can.

Goals for Sept 1, 2, 8 meetings:

PART I: Agreement/Consensus on how to treat survey data to initialize SAMS model. Modifications to SAMS parameters.


- Survey data treatment (SH/MW, dredge efficiency)
- Projection assumptions (growth, selectivity, LPUE)

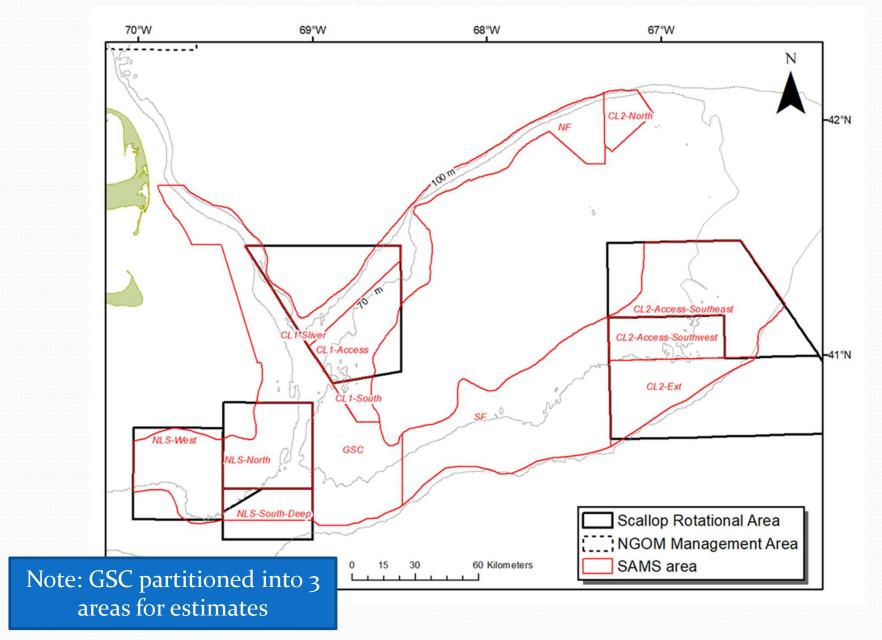
PART 2: Develop initial input around biological considerations in particular resource areas. EX: NLS-S-deep, CAII region, MAAA.

Upcoming Meeting/Milestones:

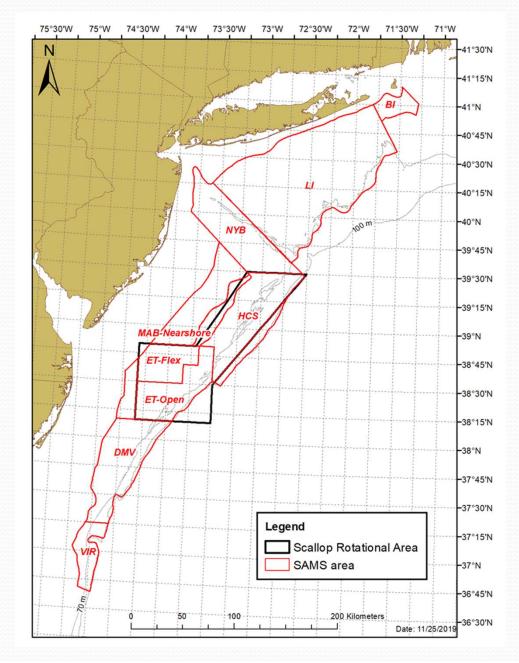
We'll need several meetings to review and agree on survey data and SAMS parameters, prepare memo to SSC:

- **TODAY:** September 1, 2021 Scallop PDT review survey results
- **TOMORROW:** September 2, 2021 Scallop PDT
- September 8, 2021 Scallop PDT review survey results, FW34
- September 21, 2021 Joint Scallop PDT/AP meeting
- September 22, 2021 Scallop Committee meeting
- September 29, 2021 Scallop Report , Council meeting (tent.)
- TBD Scallop PDT calls to finalize report to SSC.
- October 13, 2021 Science and Statistical Committee meeting

I. Survey Data Treatment issues


- SAMS Areas: MAB the same, changes on GB
 - GSC: sensitivity estimates for I area vs. 3 areas.
- **STARTING POINTS FOR DISCUSSION:**
- NGOM now part of overall survey estimates, OFL/ABC.
- SH/MW equations: SARC 65 for all areas.
 - Consider VIMS SHMW from 2016-2021 in NLS-South.
- Data agreement by SAMS Area?
 - Dredge, HabCam, Drop Camera
- **Combining Data:** Use average of all available surveys for each SAMS area to initialize the model.
 - **Dredge efficiency:** Factor of 3 (SARC 65, recent FWs)
 - Timing of surveys (any special comments?)

I. Projection topics


Will start or continue discussion on Sept. 2nd or 8th.

- SAMS Areas: Start with no changes from FW33
 STARTING POINTS FOR DISCUSSION:
- Review Growth Assumptions:
 - Slow growth in the NLS-South-Deep area.
 - Performance of projections (see Dvora's spreadsheet)
- Selectivity Curves: Discuss appropriate curves for scallops in high density areas, such as NLS-S-deep.
- LPUE Model: Did not use model in FW33, overly optimist projection of LPUE.

SAMS areas – Georges Bank

SAMS areas – Mid-Atlantic

11

Survey Presentations

Combining Estimates

<u>Starting point</u>: Use the <u>mean</u> of available surveys in each SAMS area

- SMAST, VIMS, & NEFSC estimates for GB and MA.
- CFF estimates provided as a sensitivity.
- In NGOM, combined SMAST and DMR in area of interest.

Considerations:

Dredge efficiency, SH/MW

- VIMS has adjusted dredge efficiency in NLS-S-deep in estimates
- ME DMR data SH/MW and dredge efficiency for Stellwagen Bank
- How well do the surveys agree in each SAMS area?
 - Several slides with data from short reports
 - Review by "regions"

Data Agreement

- NOTE: The Avg size in the 2021 Survey Biomass Estimates of the Short Reports excludes scallops less than 40mm.
- Need to look at the L-F plots to see all sizes.

Conversions

• Grams to market grades....

grams	count
46	U10
30	15
23	20
15	30
11.5	40
9	50

• Document #3 – Combined Survey Estimates

Placeholder

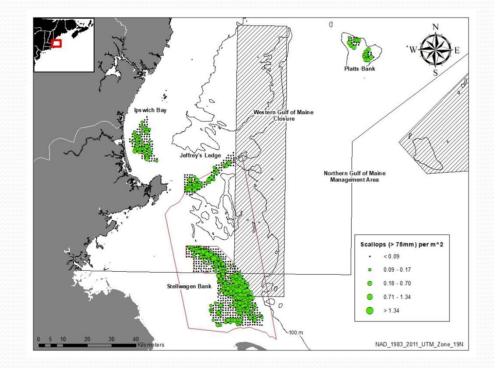
• Any special considerations for 2021?

• Timing of the surveys? 14 months last year between surveys, so shorter time between surveys this year.

NGOM Areas: OFL and ABC estimates

- GOAL: Outline new process for FW34.
- A21 Change: For the OFL and ABC, use exploitable biomass from the NGOM.
- Calculated using GB

Fmsy



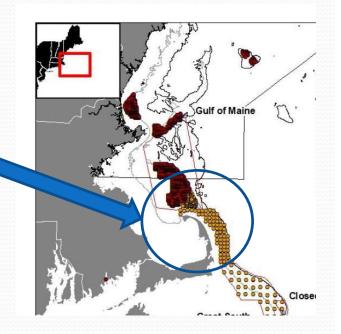
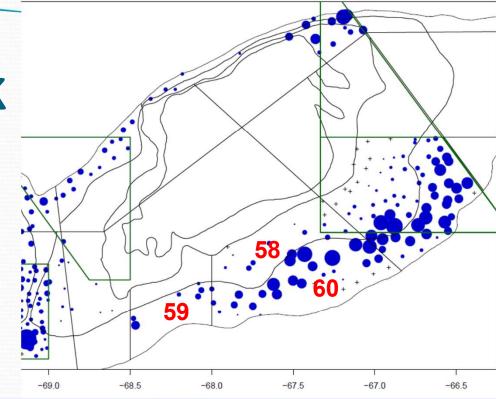


Figure 2. Example of scallop legal limits (OFL, ABC, ACL) with the Northern Gulf of Maine incorporated into estimates of the OFL and ABC (Alternative 2, 4.1.2).

Survey Areas


- GOAL: Confirm areas that will be used for forward projections in the SAMS model.
- Starting point for discussion: Do not include estimates from southern Stellwagen and the outer Cape in FW34.
- Rationale: Areas are not part of SAMS areas reviewed at the last benchmark or 2020 management track assessment. Council identified areas for the NGOM to be included as part of OFL/ABC estimates but did not include these areas. Ongoing work on survey strata could identify these areas. Revisit again next year.
- PDT: input needed. Agree? Disagree?

Abundance 75+, 2021 Dredge Surveys

Southern Flank

- <u>2021 Process:</u>
- Combine VIMS and NEFSC dredge estimates together to develop a single dredge estimate
 - Dredge coverage: NEFSC in strata 58 and 59,VIMS covered rest of area.
- Take mean of dredge, drop cam, and HabCam
- Strong agreement in estimates from drop cam, HabCam, and VIMS dredge.

SAMS/Survey		Demonstration		-	-	Cam images
Group	NUMIVIII	BmsMT SE	weanwt	Size	per m2 ann	lotated
SF						
CFF	704	12,084 3,632	2 17	91	0.20	1,940
NEFSC	707	11,398 729	9 16	97	0.17	2,287
SMAST	734	11,516 2,829	9 16	89	0.18	129
SF (58 + 59)						
NEFSC dredge	97	1,544 465	5 16	94	0.04	14
SF (60)						
VIMS	645	11,581 1,504	4 18	94	0.36	18
						20

SH/MW equations

 GOAL: Recommend appropriate SH/MW relationships for estimating survey biomass.

Starting point: SARC 65 (2018)

- Equations for MA, GB, and NLS-S-deep
- Slow growth in the NLS:
 - VIMS data from 2016-2021
 - PDT recommended using VIMS data in 2016, 2017, 2018, 2019, and 2020
 - For 2020, SARC and VIMS SHMW are similar.
- Limited data for the GOM, no equation from stock assessment:
 - Hart 2020 SH/MW developed last year using 2019 survey data
 - 2021 ME DMR/UMaine survey on Stellwagen Bank
- PDT: Other areas to consider?

SH/MW equations

Table 2 - SH./MW equations to be used in the survey short report.

GB	SHMW equation for the short report	Sensitivity		
CL1-Access	SARC 65			
CL1-Sliver	SARC 65			
CL1-South	SARC 65			
CL2-North	SARC 65			
CL2-Southeast	SARC 65			
CLS-Southwest	SARC 65			
CL2-Ext	SARC 65			
NLS-North	SARC 65			
NLS-South	SARC 65 specific equation	VIMS 16-21 SH/MW		
NLS-West	SARC 65			
NF	SARC 65			
GSC (entire area)	SARC 65			
GSC-North	SARC 65			
GSC-Middle	SARC 65			
GSC-South	SARC 65			
SF	SARC 65			
MidAtlantic				
BI	SARC 65			
LI	SARC 65			
NYB	SARC 65			
MAB-Nearshore	SARC 65			
HCS	SARC 65			
ET Open	SARC 65			
ET Flex	SARC 65			
DMV	SARC 65			
Gulf of Maine				
Stellwagen - NGOM - Agreed to Area	Hart 2020	DMR 2021 - GLM		
Ipswich - NGOM	Hart 2020			
Ipswich – MA State	Hart 2020			
Jeffreys - NGOM	Hart 2020			
Platts - NGOM	Hart 2020			
GOM - South 42 20'	Hart 2020			
WGOM Closure	Hart 2020			

- Values in the short report use the SARC 65 SHMW equations for GB & MAB.
- GOM use Hart 2020, which was based on the 2019 DMR survey data.
- VIMS 2016-2021 SHMW: Survey groups prepared sensitivity analyses.
- ME DMR 2021 survey data SH/MW analysis as a sensitivity.

2021 Survey Data

Data from NLS-Region

SAMS/Survey Group	NumMil I	BmsMT S	SE .	MeanWt	Avg. Size	Scallop density per m2	# Tows/Drops, HabCam images annotated
NLS-North							
SMAST	83	1,830	926	22	90	0.06	42
VIMS	28	886	85	31	. 103	0.02	61
NLS-South							
CFF	1,596	20,347	7,053	13	93	2.69	844
NEFSC	1,285	19,995	1,207	16	5 95	2.05	1,601
SMAST	2,012	24,263	10,188	12	91	3.10	21
VIMS	802	9,863	2,235	12	92	1.28	32
NLS-West							
NEFSC	17	400	171	24	99	0.01	6,972
SMAST	10	202	1,658	20	93	0.01	. 49
VIMS	8	228	50	28	103	0.01	. 32

SH/MW equations for NLS

• **Proposal for discussion:** <u>Continue to use updated VIMS</u> <u>data, small difference between VIMS and benchmark</u> equations.

The NLS-S was the only SAMS area in the NLS surveyed by CFF in 2021.

SAMS AREA S		SA	RC 65 SH/MW (MT)	IT) VIMS SH/MW 2016-2021 (MT)		
	NLS-South		20,347.2	18	3,8 <mark>4</mark> 8.8	
S	AMS Area	BmsN	IT (SARC 65)	BmsN	IT (VIMS)	%Diff
NLS-South			19995 1733			13.32
2222222		V	SARC 65 SH/I BmsMT (SE		VIMS SH/MW BmsM ⁻	
NLS-	-South		24,263 (10,188)	na e r	23,009 (9,662)	

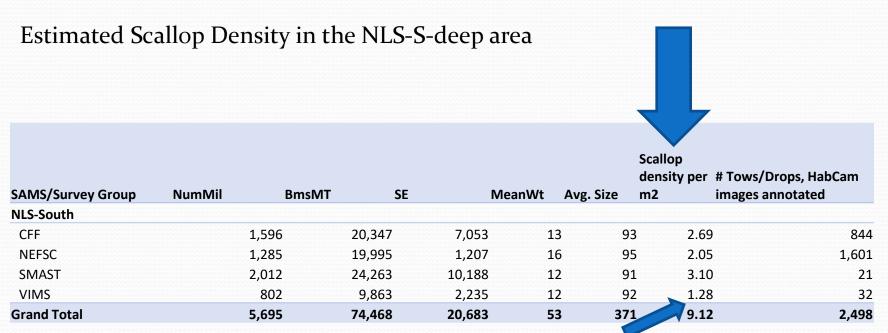
William & Mary		SARC 65 SH/MW	VIMS SH/MW 2016-2021
GINIA INSTITUTE OF MARINE SCIENCE MARINE ADVISORY SERVICES	NLS-South	9,863.43	9,375.19

VIRGINIA

SH/MW equations for NLS

• **Proposal for discussion:** BACK to SARC 65, small difference between VIMS and benchmark equations, stay with VIMS SH/MW equations. Using the same process as 2020. CHECK IN WITH Survey groups to confirm the new numbers.

	SARC 65 SH/MW	VIMS SH/MW 2016-2021		
NLS-South	9,863.43	9,375. <mark>1</mark> 9		


	No adjustment	Reduced efficiency (*0.13)		
	NumMill	BiomassMT	NumMill	BiomassMT
NLS-South	802,244,531	9,863.43	2,468,444,710	30,349.02

Dredge efficiency in NLS-South

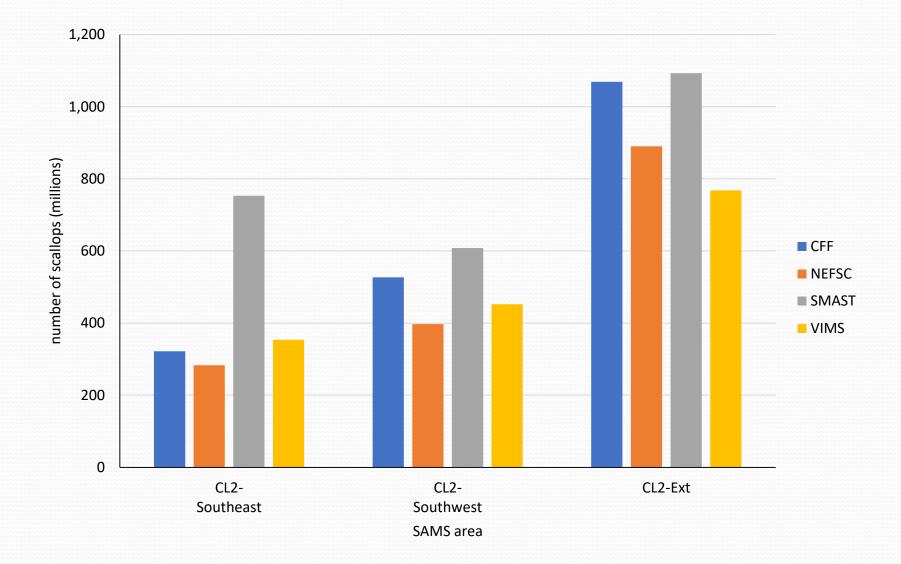
- <u>Starting point</u>: Use the mean of available surveys in each SAMS area
- Suggestion: Review density estimates from dredge and optical surveys. Optical is not 3x dredge (less)

• Options:

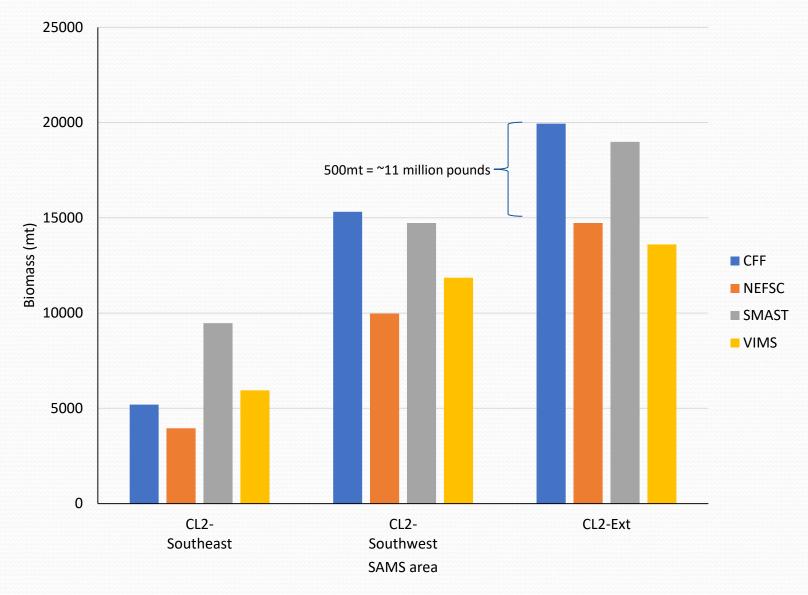
- No change for dredge efficiency. Use the mean average.
- Drop dredge data.
- Apply reduced dredge efficiency.

2020 Dredge density: 1.79 in NLS-South,

1.03 in CAII-SW (no adjustment)

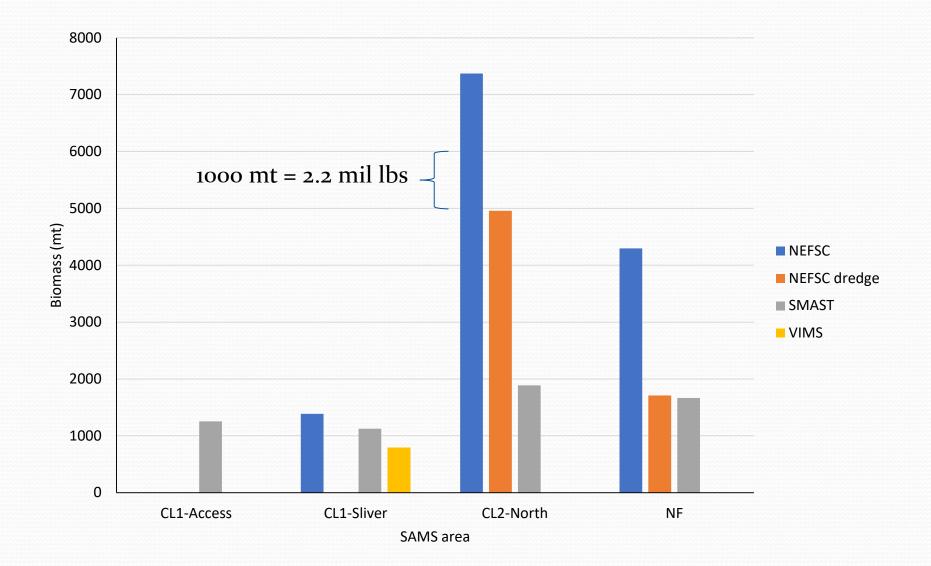

VIMS sensitivity analyses for dredge efficiency in NLS-South area

	No adjustment		Reduced efficiency (*0.13)		
	NumMill	BiomassMT	NumMill	BiomassMT	
NLS-South	802,244,531	9,863.43	2,468,444,710	30,349.02	

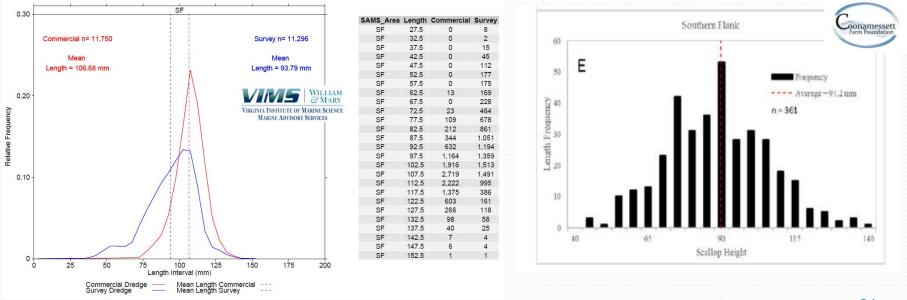

Data from CAII Rotational Areas

						=	# Tows/Drops,
SAMS/Survey		DueseMAT	C.F.		Avg.	•	HabCam images
Group	NumMil	BmsMT	SE	MeanWt	Size	per m2	annotated
CL2-							
Southeast							
CFF	32	22 5,19	3 1,661	. 14	82	0.21	. 1,624
NEFSC	28	33 3,94	7 429) 14	82	0.11	1,616
SMAST	75	53 9,46	4 2,634	l 13	83	0.29	85
VIMS	35	54 5,94	2 409) 17	88	0.15	46
CL2-							
Southwest							
CFF	52	15,31	4 4,830) 29	106	0.65	770
NEFSC	39	9,97 9,97	0 682	2 25	106	0.36	768
SMAST	60	08 14,72	4 2,578	3 24	104	0.59	134
VIMS	45	52 11,85	2 1,684	26	104	0.39	19
CL2-Ext							
CFF	1,06	59 19,94	5 5,514	l 19	91	0.88	939
NEFSC	89	90 14,72	4 829) 17	91	0.64	937
SMAST	1,09	93 18,98	3 2,420) 17	93	0.79	179
VIMS	76	58 13,60	2 1,581	. 18	90	0.37	22

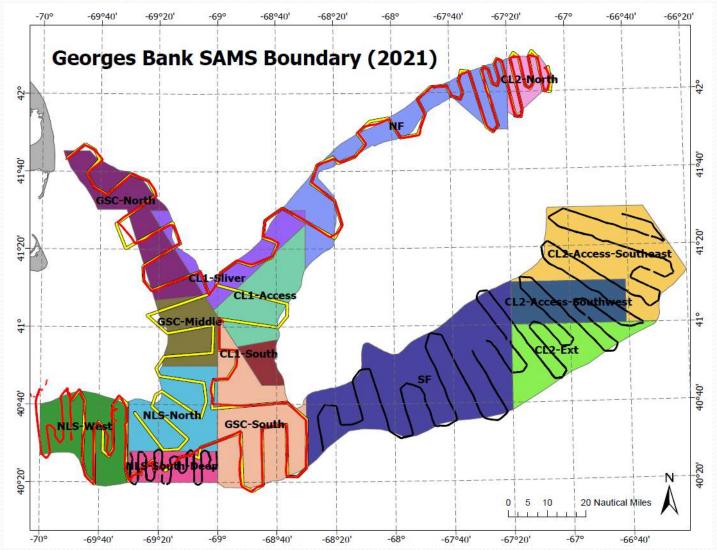
Data from CAII Rotational Areas Millions of Scallops (# scallops per area)


Data from CAII Rotational Areas Biomass (mt)

Data from CAI, NF, CAII-N


		D	6F		Avg.	Scallop density	# Tows/Drops, HabCam images
SAMS/Survey Group CL1-Access	NUMIVIII	BmsMT	SE	MeanWt	Size	per m2	annotated
SMAST	65	1,254	634	19	89	0.05	39
CL1-Sliver							
NEFSC	113	1,387	224	12	84	0.14	1,731
SMAST	131	1,125	382	9	70	0.15	29
VIMS	38	792	55	20	91	0.05	20
CL1-South							
SMAST	3	6	6	2	47	0.01	8
CL2-North							
NEFSC	282	7,371	103	26	95	0.64	3,705
NEFSC dredge	178	4,958	1,418	28	91	0.40	7
SMAST	246	1,886	727	14	77	0.27	16
NF							
NEFSC	296	4,295	361	15	86	0.16	6,949
NEFSC dredge	118	1,710	639	14	84	0.11	12
SMAST	94	1,665	614	18	90	0.06	54

Data from CAII Rotational Areas Biomass (mt)



Data from SF

CANE /Survey				Δυσ	-	Tows/Drops,
SAMS/Survey			N/00m\//t	-	-	labCam images
Group	Numiviii	BmsMT SE	Ivieanvi	Size	per m2 a	innotateu
SF						
CFF	704	12,084 3,6	32 17	7 91	0.20	1,940
NEFSC	707	11,398 7	29 16	5 97	0.17	2,287
SMAST	734	11,516 2,8	29 16	5 89	0.18	129
SF (58 + 59)						
NEFSC dredge	97	1,544 4	65 16	5 94	0.04	14
SF (60)						
VIMS	645	11,581 1,5	04 18	3 94	0.36	18

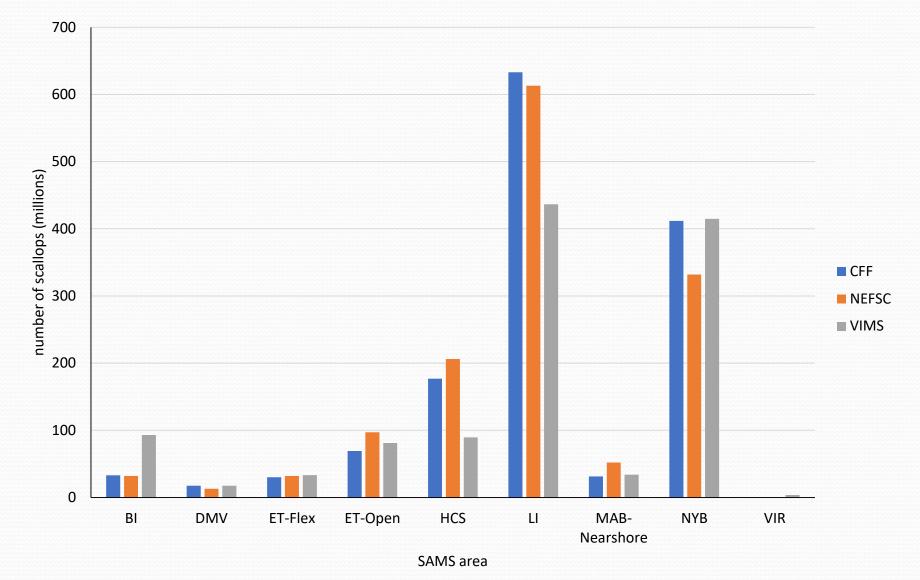
GSC Stratification (3 areas)

Data from GSC with post-stratification for discussion

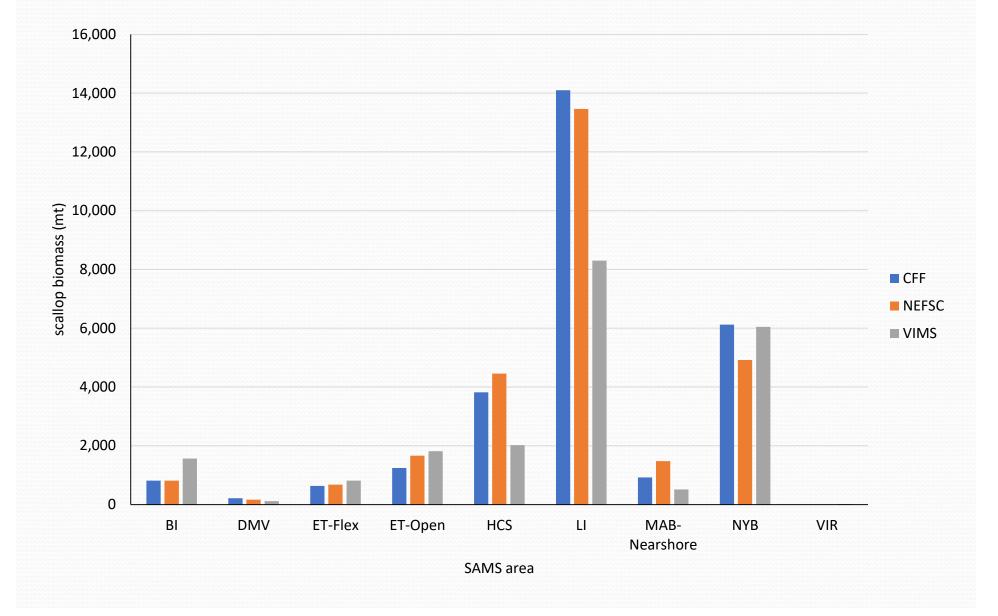
						Scallop	# Tows/Drops,
SAMS/Survey				Mean		density	HabCam images
Group	NumMil	BmsMT	SE	Wt	Avg. Size	per m2	annotated
GSC original							
SMAST	539	12,338	1,980	23	93	0.12	150
GSC-Middle							
NEFSC dredge	54	1,091	167	20	96	0.08	11
SMAST	190	4,872	1,200	26	98	0.23	27
GSC-North							
NEFSC	141	3,024	394	22	88	0.10	3,077
NEFSC dredge	222	3,936	924	18	92	0.10	18
SMAST	246	5,716	1,269	23	91	0.17	47
GSC-South							
NEFSC	66	1,396	209	21	99	0.03	5,724
NEFSC dredge	16	353	156	22	104	0.01	. 11
SMAST	103	1,775	553	17	89	0.04	. 76
Split GSC Total							
SMAST	539	12,363					150

Data from GSC with post-stratification for discussion (all values in mt)

	SMAST	NEFSC	NEFSC		
	DropCam	Dredge			Mean of the sum of the DropCam+Dredge
GSC-North	5,716	3,936	3,024	4225.3	
GSC-Middle	4,872	1,091		2981.5	
GSC-South	1,775	353	1,396	1174.7	
Total (mt) (SUM)	12,363	5,380		8381.5	
Do not use the HabCam data					8871.5

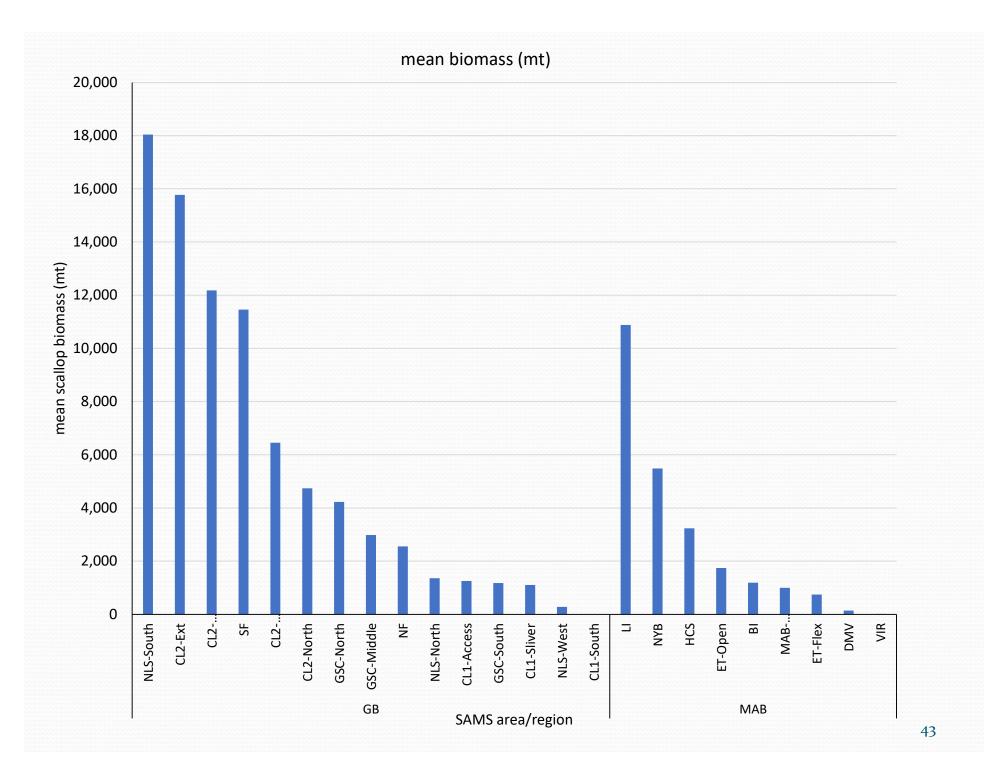

Data from Georges Bank

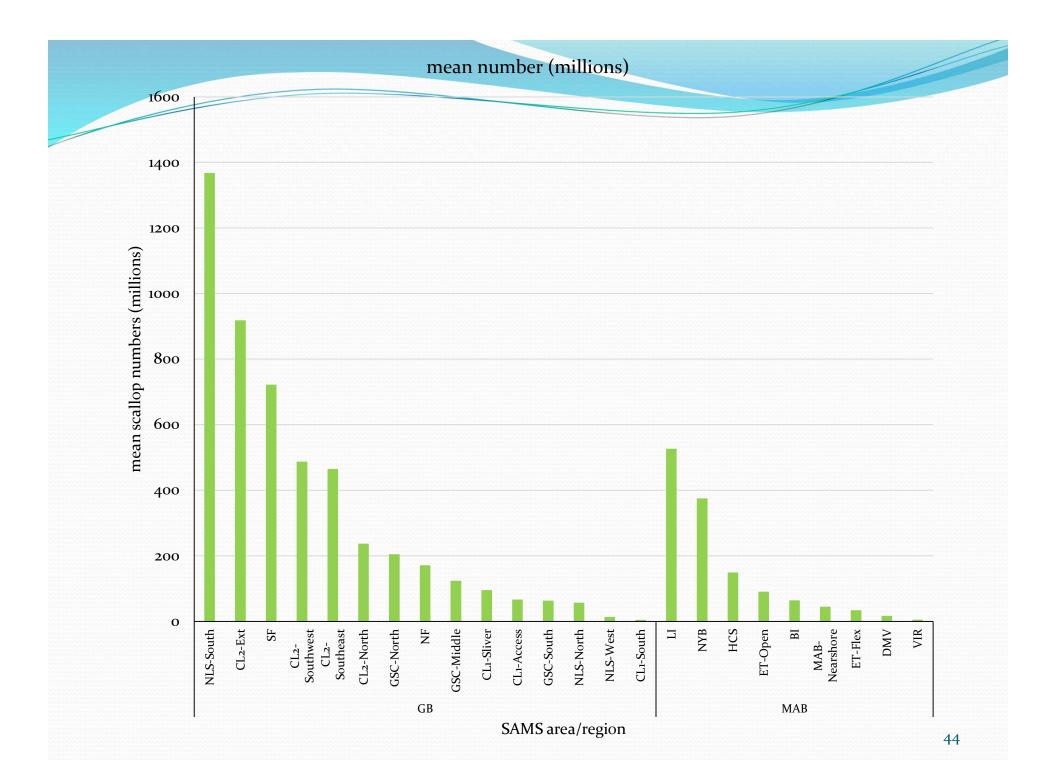
• Data issues? Agreement between surveys?

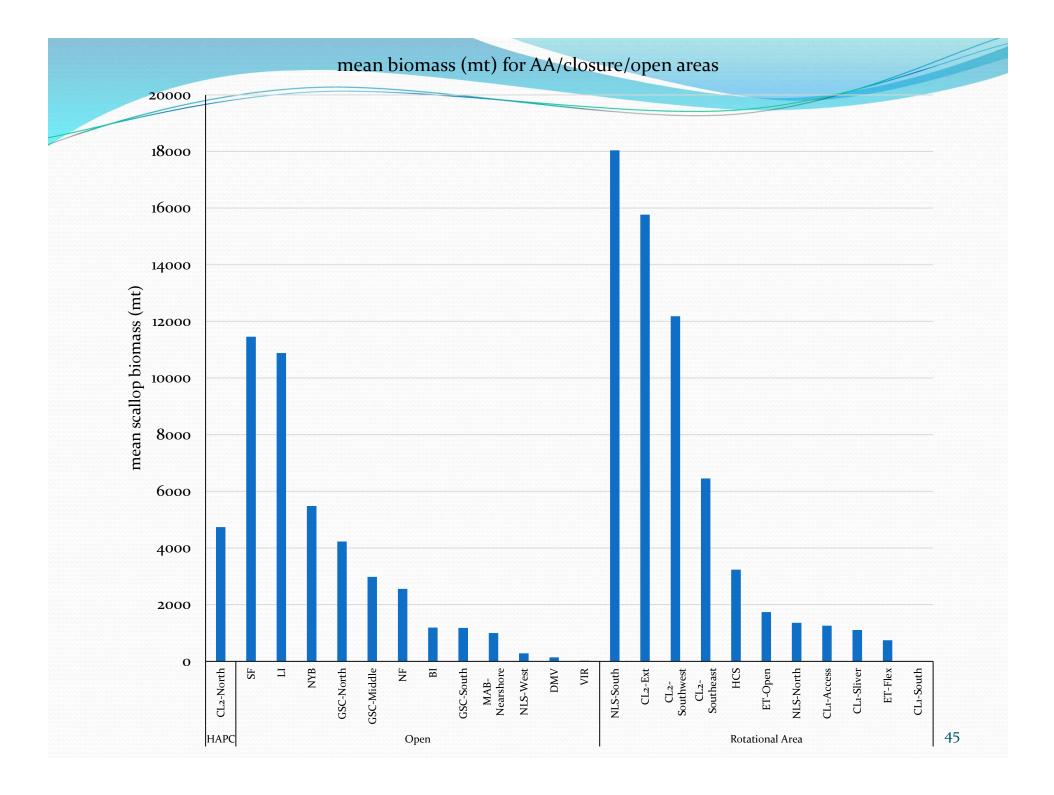

Data from Mid-Atlantic

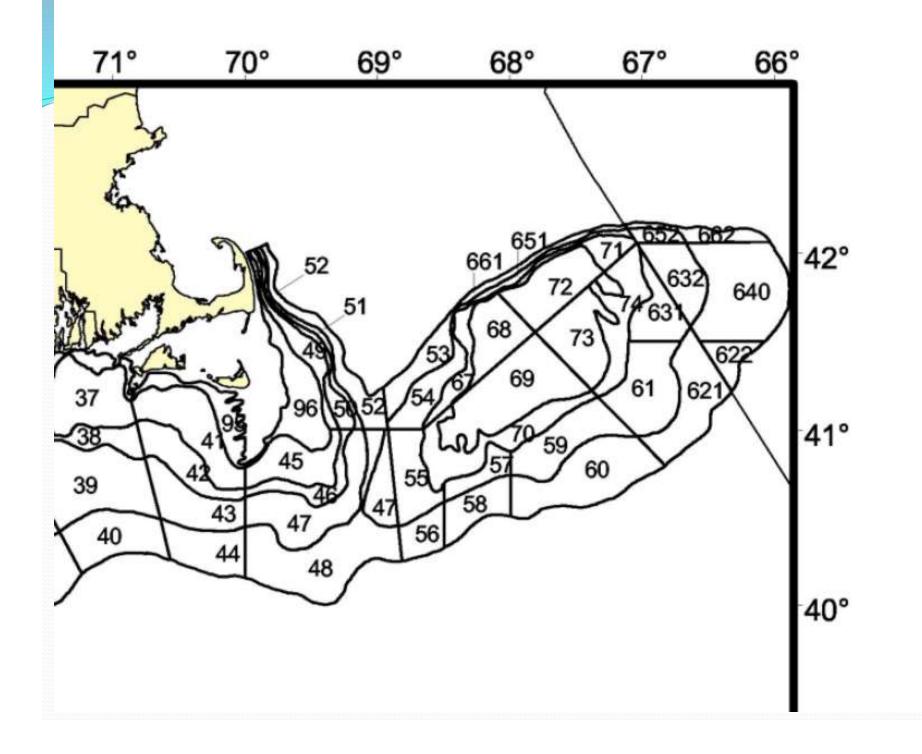
								# Tows/Drops, HabCam images
SAMS/Survey Group	NumMil	BmsMT	SE	MeanWt	Avg. Size	•	m2	annotated
BI CFF	3	3 814	48	<u>с</u>	25	104	0.04	4 368
NEFSC	3				25 26	104		
VIMS	9				20 17	104 92		
DMV	9.	5 1,50	+ 2/	4	17	92	0.14	+ 12
CFF	1	8 212	2 18	C .	12	84	0.00) 1,51(
NEFSC	1				12	84 84		
VIMS	1	8 115	5 1	5	7	64	0.00) 51
ET-Flex					~ 4	4.0.2		
CFF	3				21	103		
NEFSC	3				21	103		
VIMS	3	3 812	2 5	8 :	27	113	0.02	2 29
ET-Open								
CFF	6	~~~~~			17	92		
NEFSC	9				17	92		
VIMS	8	1 1,814	17	1	23	105	0.04	4 53
HCS								
CFF	17				22	107		
NEFSC	20	6 4,453	3 23		22	107	0.05	5 1,966
VIMS	8	9 2,019	9 9	4 :	23	108	0.03	3 60
LI								
CFF	63	3 14,100) 4,19	7	22	100	0.05	5 4,115
NEFSC	61	3 13,463	3 26	9	22	99	0.05	5 4,112
VIMS	43	6 8,302	2 36	7	19	95	0.04	4 142
MAB-								
Nearshore								
CFF	3	1 919	53	3	31	116	0.0	1,171
NEFSC	5	2 1,479	9 13		29	116	0.0	
VIMS	34	~~~~~			15	79		
NYB								
CFF	41	2 6,124	1 2,23	2	16	88	0.08	3 2,047
NEFSC	33	~~~~	~~~~~~~~~~		15	87		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
VIMS	41				14	86		
VIR				-		50	511	
VIMS		4 16	5	2	5	60	0.00) 17
Grand Total	3,98				79	2,389		

Data from Mid-Atlantic Millions of Scallops (# scallops per area)

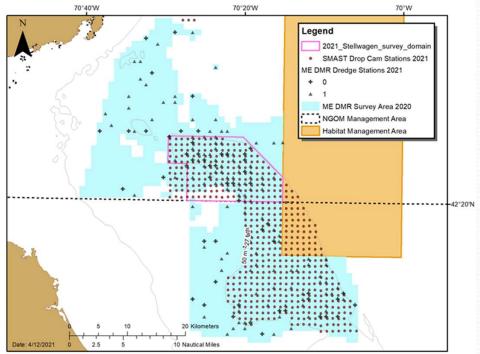


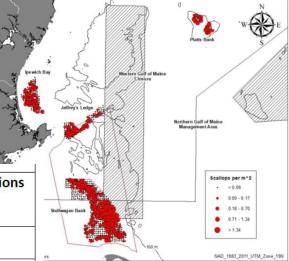

Data from Mid-Atlantic Biomass




Data from Mid-Atlantic

• Data issues? Agreement between surveys?

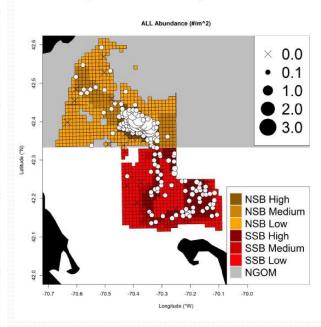



NGOM Estimates

- SMAST and DMR/UMaine survey domains do not overlap in the NGOM.
- SMAST and ME DMR/UMaine developed estimates for an agreed upon area of interest on Stellwagen Bank.

SMAST GOM Survey Data

GOM	NumMil	BmsMT	SE	MeanWt	Avg. Size (mm)	Scallop density (m²)	# Stations
Platts Bank	7	108	24	14.7	97.3	0.22	34
Ipswich Bank	10	<mark>143</mark>	28	14.7	89.9	0.10	93
Jeffreys Ledge	15	268	48	17.7	96.9	0.14	108
NGOM Stellwagen Bank	112	1,508	501	13.4	88.3	0.66	169
NGOM TOTAL	144	2,026					404
Non-NGOM Stellwagen Bank (Stellwagen South)	31	547	31	17.5	93.9	0.11	291
Non-NGOM WGOM Closure	106	2,308	349	21.7	103.9	1.77	60
Non-NGOM Ipswich Bay (MA State Waters)	3	41	11	12.7	88.1	0.13	25


DMR/UMaine GOM Survey Data

1.0 2021 SURVEY BIOMASS ESTIMATES

Hart 2020 SH/MW equation														
GOM	NumMil	BmsMT	SE	MeanWt (g)	Avg. Size (mm)	Scallop density (g/m^2)	# Tows							
NGOM Stellwagen Bank	86.02	1426.76	667.81	21.02	100.53	8.15	76							
NGOM TOTAL	86.02	1426.76	667.81	21.02	100.53	8.15	76							
Non-NGOM Stellwagen Bank (Stellwagen South)	17.76	341.09	85.97	20.38	98.11	0.65	75							

Dredge efficiency = 0.4

Full Survey Area Total Scallop Abundance 2021:

SH/MW equations for NGOM

• Proposal for discussion:

- For non-Stellwagen areas, SMAST continue to use Hart 2020 equation because this equation incorporated biological data from several areas of the NGOM (2019).
- For Stellwagen Bank estimate in the NGOM (Area of Interest), use updated DMR/UMaine SH/MW equation. Rationale: Current year data for a specific area, similar Hart 2020.

4.0 SENSITIVITY ANALYSES – STELLWAGEN BANK

<u>Comparison of biomass estimates</u>: 2020 Hart SH/MTW equation and 2021 ME DMR/UMaine SH/MTW equation. Dredge efficiency = 0.4.

	Biomass estimate (metric tons) using: Hart 2020 SH/MW equation	Hart SE	Biomass estimate (metric tons) using: DMR/UMaine 2021 SH/MW equation	DMR/ UMaine SE
NGOM Stellwagen Bank	1426.76	667.81	1474.52	693.17
Non-NGOM Stellwagen Bank (Stellwagen South)	341.09	85.97	355.39	92.02

Dredge efficiency in NGOM-Stellwagen

- <u>Starting point</u>: Use the mean of available surveys in each SAMS area (no adjustment)
- **Discussion:** DMR dredge filled at three (3) stations when surveying Stellwagen Bank in the NGOM.
- Is there a specific <u>density</u> at which we can say the dredge fills up and the estimates are not accurate?
 - See next slide.

Estimated Sca	llop De	nsity in	the NG(OM Stell	wagen Are	a of Interest	
Northern Stelly	vagen Bank						
				MeanWt			
GOM	NumMil	BmsMT	SE	(g)	Avg. Size (mm)	Scallop density (m ²)	# Stations
SMAST							
DropCam	112	1,508	501	13.4	. 88.3	0.66	169
ME							
DMR/UMaine	86	1427	668	21	100.5	8.15 g/m^2	76

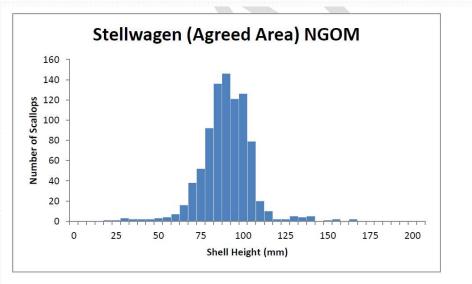
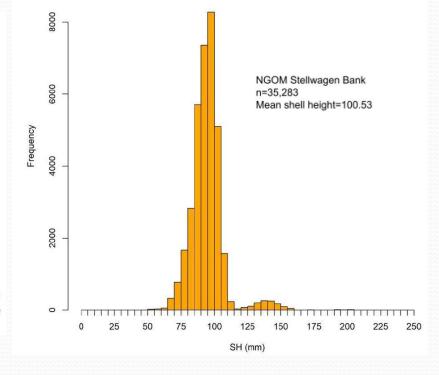
Note: Mode of dredge L-F was 90-95mm, measured larger YC, see next slide. High densities are not distributed throughout the area of interest.

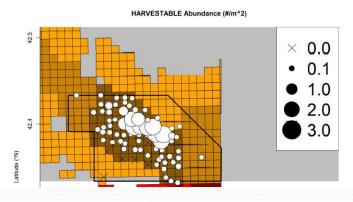
ME DMR/UMaine sensitivity analyses for dredge efficiency in GOM area

DMR analysis of dredge efficiency on Stellwagen Bank: Atlantic Sea Scallop abundance (millions) and biomass (metric tons) were estimated at three different dredge efficiencies within the area of interest, as high densities may have impacted gear function. The ME DMR used a dredge efficiency of 0.4 (Kelly, 2006). A dredge efficiency of 0.26 was also considered, as it was considered by the DMR in past surveys. Estimates were also generated at a dredge efficiency of 0.13, as discussed in SARC 65.

	No adjustr 0.4	nent	Reduced e 0.26	fficiency	Reduced efficiency 0.13			
	NumMill	Biomass MT	NumMill	Biomass MT	NumMill Biomass MT			
NGOM Stellwagen Bank	86.02	1474.52	132.34	2268.49	264.67	4536.99		

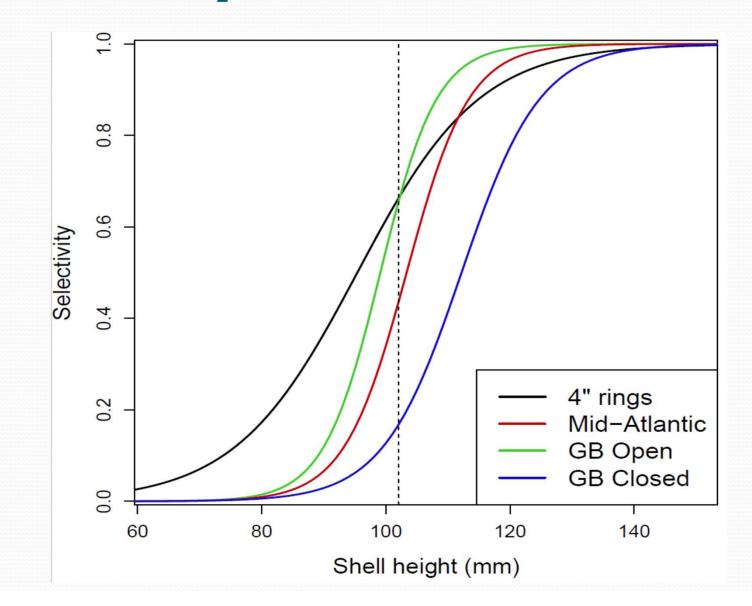
L-F comparison for NGOM-Stellwagen

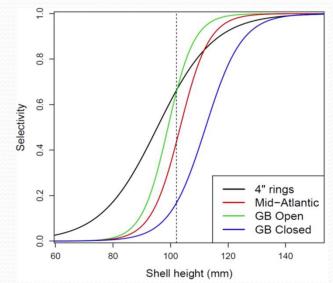

Figure 10. Shell height distribution of scallops on Stellwagen Bank in the agreed upon area within the Northern Gulf of Maine Management area from the SMAST Drop Camera survey. The overall average shell height was 87.7 mm with 884 scallops measured.

NGOM Area of Interest Scallop Abundance Greater Than 75mm:

Figure 6. Scallop (> 75 mm) density from the 2021 SMAST Drop Camera survey.

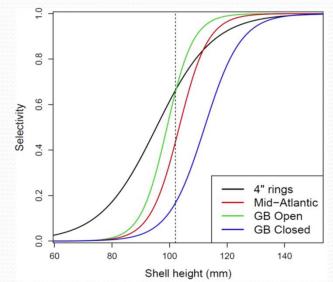


Assumptions for the SAMS model:


Selectivity curves Growth (L∞ and K) Recruitment assumption Discrepancy between projections with the surveys? Was slower than expected growth observed? Scaling to different growth stanzas?

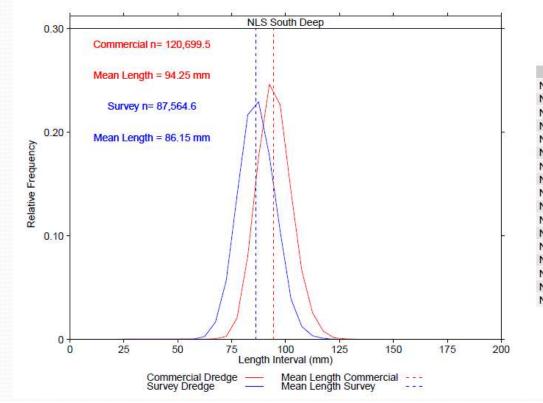
Selectivity Curves

Selectivity Curves


 For 2022 Exploitable Biomass, used in SAMS

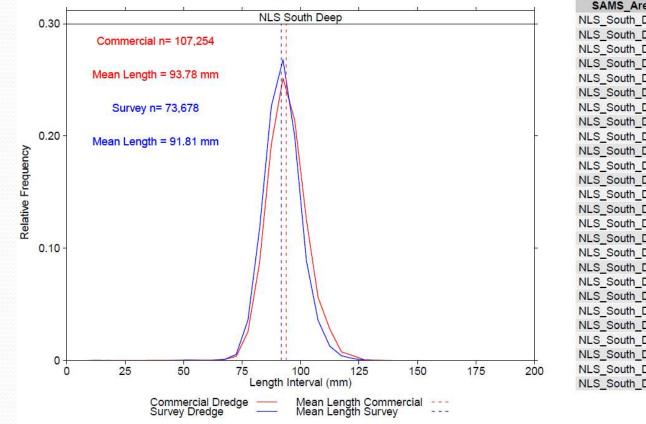
- In 2020, the PDT recommended applying the Georges Bank Open selectivity curve in the Nantucket Lightship-South-deep area to select a larger proportion of the 9-year-old animals in this area that are have already recruited to the fishery but are not growing normally.
- SAMS model projections of exploitable biomass are based on selectivity curves estimated from the CASA model, which account for gear selectivity (i.e. 4" ring) and fishery selectivity (i.e. targeting larger scallops).

Selectivity Curves


 For 2021 Exploitable Biomass, used in SAMS

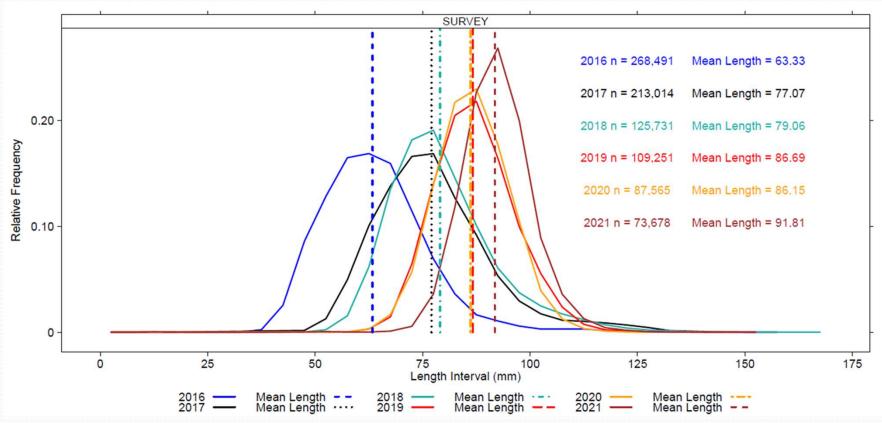
- Does the PDT recommend using different selectivity curves for the NLS-South? Used GB Open Curve for NLS-South in Framework 32 and Framework 33. (Proposal: Stick with GB Open)
 - Other areas?
- This results in more exploitable biomass, higher OFL, ABC.

Growth (L∞ and K)


- Changed growth for NLS areas in the past.
- SARC 65 set the L∞ of scallops in the NLS-S-deep at 110 mm. <u>Is 110 the right number? 10 yo in 2021.</u>
 - VIMS L-F analysis for NLS-South area next Tuesday

SAMS_Area	Length	Commercial	Survey
NLS_South_Deep	57.5	40.0	25.0
NLS_South_Deep	62.5	26.0	244.0
NLS_South_Deep	67.5	80.0	1,460.0
NLS_South_Deep	72.5	335.0	4,973.0
NLS_South_Deep	77.5	2,477.0	12,156.0
NLS_South_Deep	82.5	9,739.0	18,997.0
NLS_South_Deep	87.5	21,242.0	20,095.0
NLS_South_Deep	92.5	29,743.0	15,520.0
NLS_South_Deep	97.5	27,324.0	9,160.0
NLS_South_Deep	102.5	17,310.0	3,432.0
NLS_South_Deep	107.5	8,064.0	1,095.0
NLS_South_Deep	112.5	3,097.0	304.0
NLS_South_Deep	117.5	957.0	87.0
NLS_South_Deep	122.5	182.0	15.0
NLS_South_Deep	127.5	64.0	1.0
NLS_South_Deep	132.5	18.0	0.0
NLS South Deep	137.5	1.0	0.0

Growth (L∞ and K)

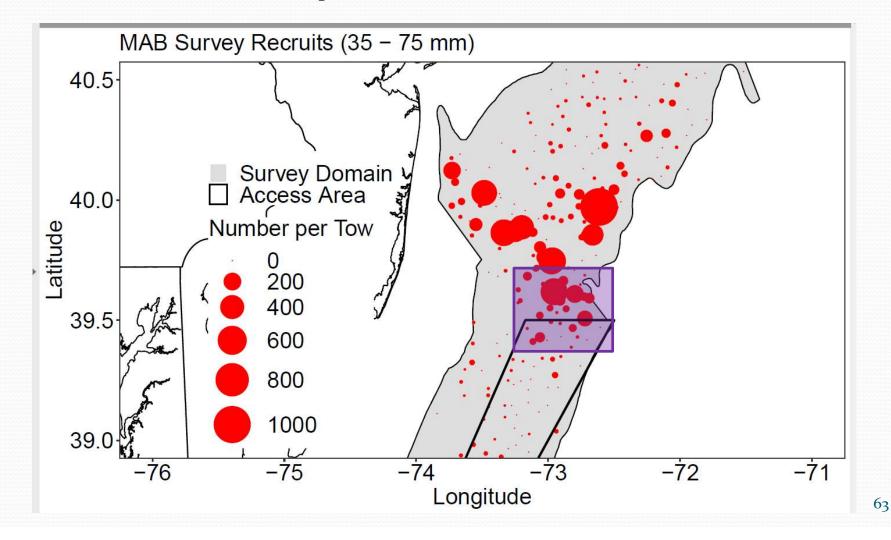

- Changed growth for NLS areas in the past.
- SARC 65 set the L∞ of scallops in the NLS-S-deep at 110 mm. <u>Is 110 the right number? 10 yo in 2021.</u>

SAMS_Area	Length	Commercial	Survey
NLS_South_Deep	7.5	0	3
NLS_South_Deep	12.5	0	25
NLS_South_Deep	17.5	0	11
NLS_South_Deep	22.5	0	4
NLS South Deep	42.5	0	1
NLS_South_Deep	52.5	0	39
NLS_South_Deep	57.5	0	14
NLS_South_Deep	62.5	54	11
NLS_South_Deep	67.5	110	76
NLS_South_Deep	72.5	407	407
NLS_South_Deep	77.5	2,743	2,655
NLS_South_Deep	82.5	9,402	8,676
NLS_South_Deep	87.5	20,644	16,687
NLS_South_Deep	92.5	26,983	19,756
NLS_South_Deep	97.5	22,964	14,698
NLS South Deep	102.5	13,458	6,550
NLS_South_Deep	107.5	6,038	2,633
NLS South Deep	112.5	3,016	947
NLS_South_Deep	117.5	833	316
NLS_South_Deep	122.5	464	133
NLS_South_Deep	127.5	63	29
NLS_South_Deep	132.5	52	5
NLS South Deep	137.5	18	1
NLS_South_Deep	142.5	3	0
NLS_South_Deep	147.5	1	0
NLS_South_Deep	152.5	0	1

Growth (L∞ and K)

- Changed growth for NLS areas in the past.
- SARC 65 set the L∞ of scallops in the NLS-S-deep at 110 mm. <u>Is 110 the right number? 10 yo in 2021.</u>

Part 2: Outlook

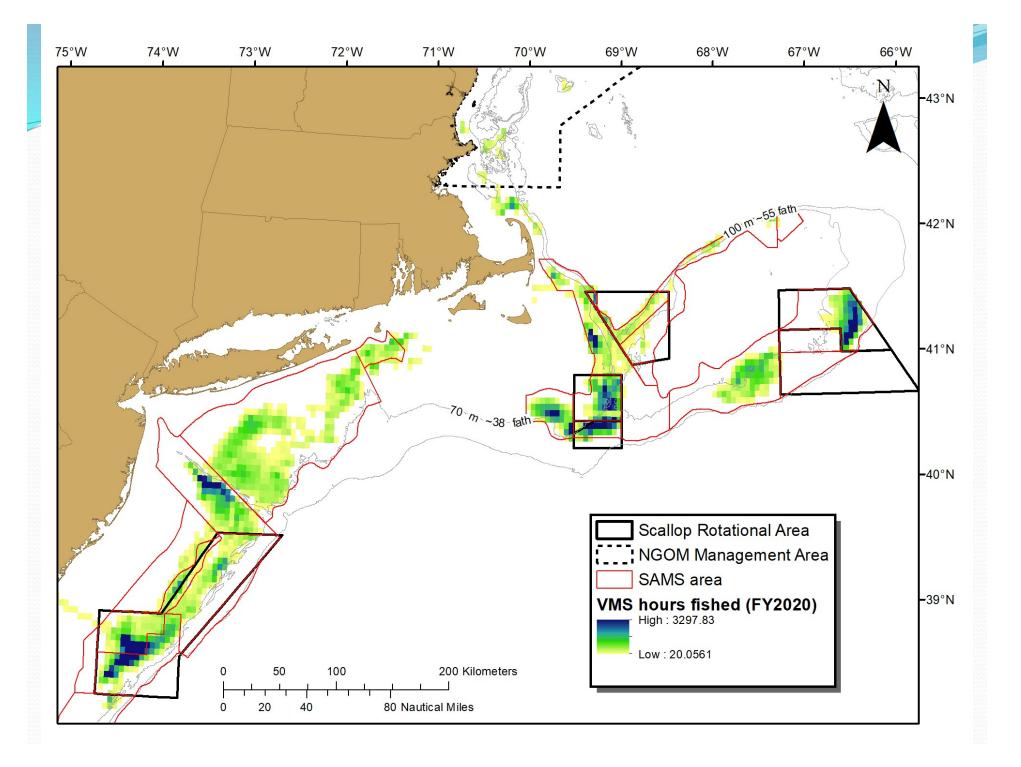

• PDT input:

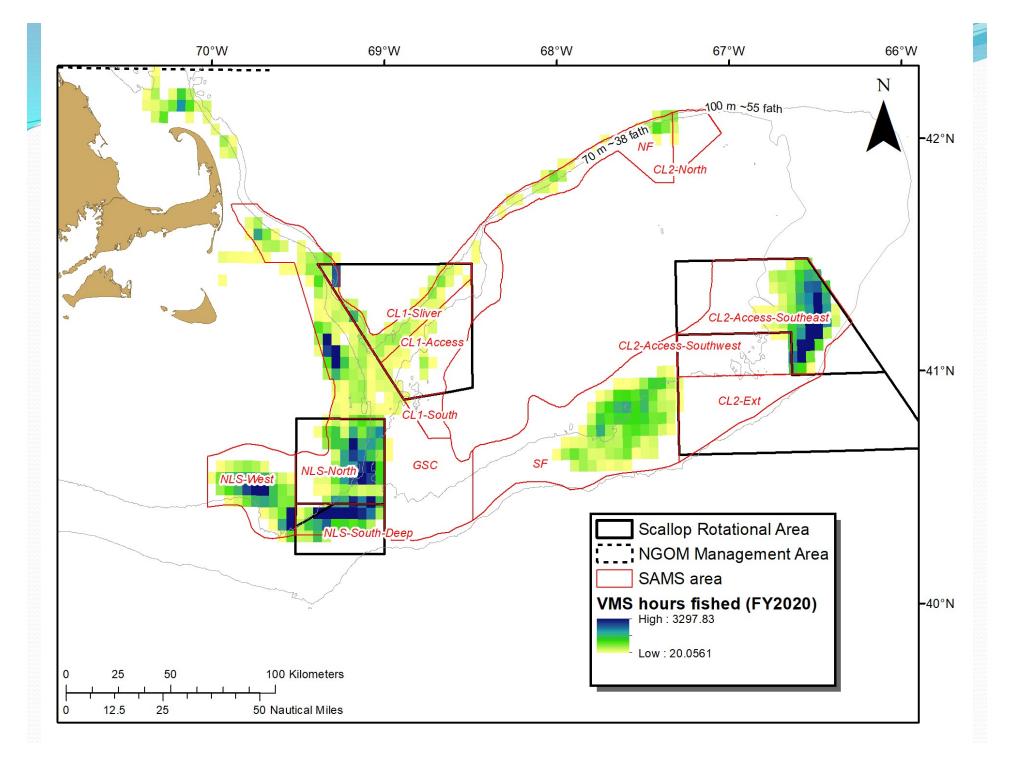
Run idea to start us off...

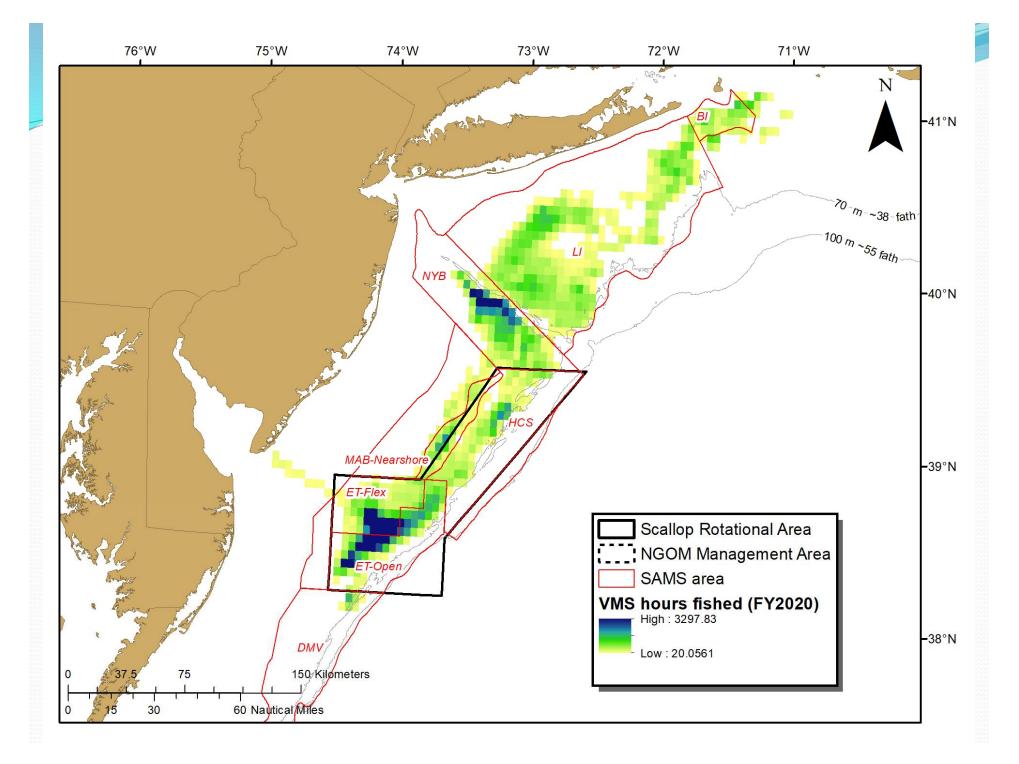
- I.5 CAII (SW & Ext combined) @ 18,000lbs
- I NLS-S @ 18,000lbs
- MAAA becomes open bottom, with a partial closured of NYB and HCS to improve YPR + source/sink
- DAS >24
- Closures in CAII-SE region to protect small scallops and optimize growth
- No FLEXing

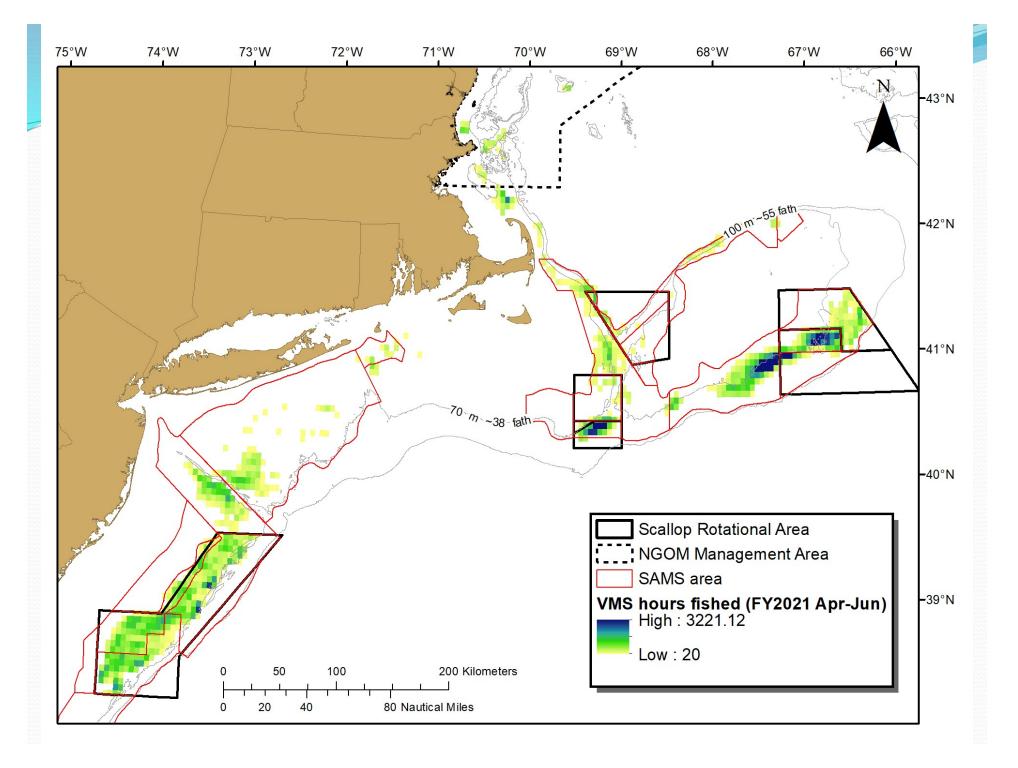
Possible closure area?

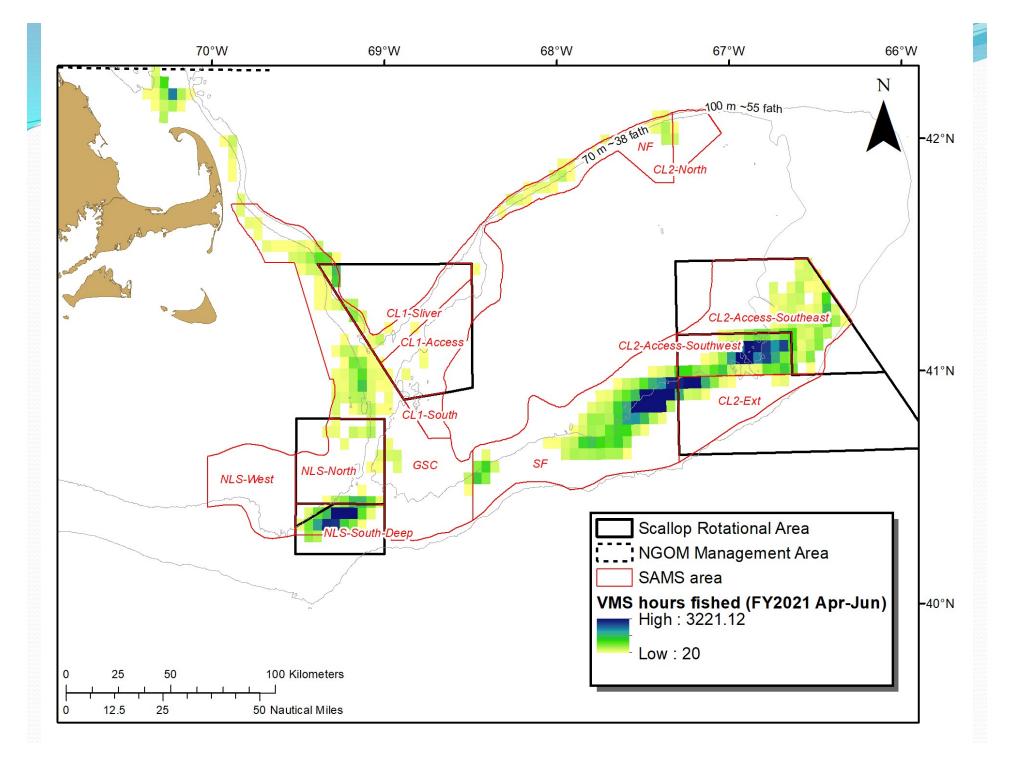
Closure in the NYB + HCS to improve YPC and foster source/sink relationship between this area and the Elephant Trunk


Document #3 – Combined Survey Estimates from 2020.


Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V W	X	Y
			Dredge					D	ropCa	am			H	labca	m			Mean			F32 P	rojection	15
Regior	Subarea	Num	Bmsmt	SE	MeanWt	I	Num	Bmsmt	SE	MeanWt		Num	Bmsmt	SE	MeanWt	1	lum	Bmsmt	SE	MeanWt	Bmsmt	%ChangeE	ExpBmsm
GB	CL1ACC															5	2.0	829		15.9	829		
GB	CL1NA	60.2	1490	271	24.8											(50.2	1490	271	24.8	3300	-54.8%	
GB	CL-2(N)															3	01.0	6347		21.1	6347		
GB	CL-2SE	370.6	5,185	528.2	14.0		505	5083	842	10.1		406	6718	57	16.5	4	27.3	5662	332	13.3	14763	-61.6%	
GB	CL-2SW	1079.0	21,357	4722.3	19.8		790	17769	3442	22.5		774.9	14693	354	19.0	8	81.3	17940	1951	20.4	8385	113.9%	
GB	CL2Ext	913.8	12924	1524.469	14.1	1	1048	15401	1986	14.7		856	11055	200	12.9	9	39.3	13127	837	14.0	5965	120.1%	
GB	SF	765.7	6747	124	8.8							884.3	13559	301	15.3	8	25.0	10153	163	12.3	8820	15.1%	
GB	NLSAccN	44.5	1713	213	38.5		101	3,643	707	36.1							2.8	2678	369	36.8	4619	-42.0%	
GB	NLSAccS-Deep	3613	36047	7705	10.0	2	2544	33709	6366	13.3		2591	29496	1020	11.4	29	916.0	33084	3349	11.3	44995	-26.5%	
GB	NLS-W	11.4	278	46	24.4												1.4	278	46	24.4	3706	-92.5%	
GB	NF															1	09.0	1434		13.2	1434		
GB	GSC	241.8	6056	851	25.0		329	6077	2917	18.5						2	85.4	6067	1519	21.3	8056	-24.7%	
GB	GSC-45	0.3	13.00	6.00	4 3.3												0.3	13	6	43.3			
GB	TOTAL	7100.4	91810	9227	12.9											68	880.9	99101	4287	14.4	111219	-10.9%	
MAB	BI	25.3	809	118	32.0							87.3	1447	143	16.6	5	5 <mark>6.</mark> 3	1128	93	20.0	1450	-22.2%	
MAB	LI	294.9	6,151	338	20.9							557	11228	2359	20.2	4	26.0	8690	1192	20.4	9512	-8.6%	
MAB	NYB	256.4	4007	230	15.6							387.9	6905	924	17.8	3	22.2	5456	476	16.9	8613	-36.7%	
MAB	MA inshore	10.1	309	46	30.6												10.1	309	46	30.6	1163	-73.4%	
MAB	HCSAA	174.7	4095	233	23.4							301.6	7949	847	26.4	2	38.2	6022	439	25.3	9393	-35.9%	
MAB	ET Open	265.7	7,811	370	29.4		453	12469	1171	27.6		393	10771	881	27.4	3	70.4	10350	504	27.9	20145	-48.6%	
MAB	ET Flex	113.9	3,208	283	28.2		262	8143	1127	31.1		242.4	5697	246	23.5	2	06.0	5683	396	27.6	14990	-62.1%	
MAB	DMV	37.0	352	61	9.5											3	37.0	352	61	9.5	799	-55.9%	
MAB	VIR	16.1	71	11	4.4					1							16.1	71	11	4.4	110	-35.5%	
MAB	TOTAL	1194.1	26813	677	22.5											10	582.2	38061	1505	22.6	66175	-42.5%	0
TOTAL	TOTAL	8295	118623	9251	14.3											8	563	137161	4544	16.0	177394	-22.7%	0


64


			Dredge				D	ropCa	m		. H	labca	m		Mean		
Regio	n Subarea	Num	Bmsmt	SE	MeanWt	Num	Bmsmt	SE	MeanWt	Num	Bmsmt	SE	MeanWt	Num	Bmsmt	SE	MeanWt
GB	CL1ACC	18.4	693	84	35.6	36	1049	203	29					27.1	871	73	32.1
GB	CL1NA	259.0	7857	912	29.5	154	3487	786	23					206.4	5672	401	27.5
GB	CL-2(N)	154.0	5778	2026	37.5	184.1	5,926	1,608	32					169.1	5852	862	34.6
GB	CL-2(S)	1671.0	20,689	1,129	15.4					1035	11710	356	11.3	1353.0	16200	592	12.0
GB	CL2Ext	312.1	5,568	566	17.4					653	6714	117	10.3	482.5	6141	289	12.7
GB	NLSAccN	81.5	3368	210	41.3	122	4,690	696	38.35	71	3066	379	42.9	91.6	3708	273	40.5
GB	NLSAccS-Shallow	117.6	1721	426	14.6	305	4655	3398	15.3	219	3420	9	15.6	213.8	3265	1142	15.3
GB	NLSAccS-Deep	3618.6	36608.8	1182	10.1	4839	49689	8919	10.3	3829	46060	871	12	4095.6	44119	3013	10.8
GB	NLS-W	600.8	10080.4	663	16.7	838	13,438	6,325	16.03	623	12575	3618	20.2	687.4	12031	2439	17.5
GB	NF	91.0	1585	735	17.5	57.2	1,008	372	18					74.1	1297	275	17.5
GB	GSC	296.0	7302	1354	24.7	439	6135	1000	14.0					367.6	6719	561	18.3
GB	GSC-45	1.7	82.57	29.51	49.5									1.7	83		49.5
GB	SF	686.8	12216.0	2127	17.8					1074	8514	188	7.9	880.4	10365	1068	11.8
GB	TOTAL	7908.4	113549	3937	14.4									8650.3	116322	4391	13.4
MAB	BI	94.9	1,515	254	17.3	47	1076	305	23	37	850	8	22.7	59.8	1147	132	19.2
MAB	u	407.3	9,079	350	22.4	501	9417	962	19	570	12282	770	21.6	492.7	10259	427	20,8
MAB	NYB	537.8	7425	523	14.8	464	7032	1288	15	487	7091	330	14.6	496.4	7183	476	14.5
MAB	MA inshore	53.4	1265	181	23.7					26	1020	7	39.6	39.7	1143	91	28.8
MAB	HCSAA	380.4	8544	775	22.6	580	10185	783	18	762	18303	2273	24	574.1	12344	842	21.5
MAB	ET Open	592.0	15,105	897	25.8	888	18051	1187	20	634	17215	229	27.1	704.6	16790	502	23.8
MAB	ET Flex	523.6	13,529	1,174	25.5	771	19654	2711	25	778	24357	457	31.3	690.9	19180	996	27.8
MAB	DMV	20.3	203	43	10.5	89	374	111	4	47.0	599	58	12.8	52.2	392	44	7.5
MAB	VIR	4.2	14	1	3.0									4.2	14	1	3.3
MAB	TOTAL	2614.0	56679	1811	21.7					3341.0	81717	2477	24.5	3114.6	68452	1546	22.0
Total	Open	2505	46255	2687	219					2894	37070	224	130	2951	44741	1271	204
TOTA	L TOTAL	10522	170228	4333	16.2					3341	81717	2477	24.5	11765	184774	4655	15.7


2020 and 2021 VMS Data

