

An Assessment of Sea Scallop Abundance and Distribution in the Mid-Atlantic Bight, Nantucket Lightship, Closed Area I and Closed Area II

> David B. Rudders Sally Roman Erin Mohr Kaitlyn Clark

Virginia Institute of Marine Science

Sea Scallop Plan Development Team Woods Hole, MA August 27-28, 2019

Preliminary – PDT use only.

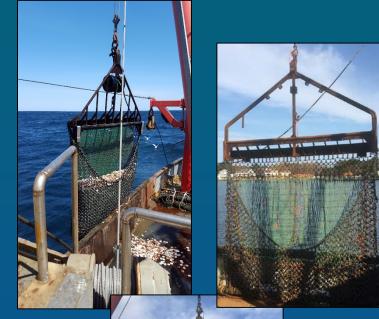


### 2019 VIMS-Industry Cooperative Surveys Project Objectives

#### **Primary Objectives**

- Assess the abundance and distribution of scallops in the Mid-Atlantic Bight, NL, CAI & CAII by SAMS Area
- Estimate total & exploitable biomass

#### **Secondary Objectives**


- Gear performance
  - Selectivity of commercial gear
- Scallop Biology & Product Quality
  - Assess marketability, growth, disease & SHMW
- Finfish Bycatch
- Scallop Predators





## VIN5

### 2019 VIMS-Industry Cooperative Surveys





- Sampling design
  - Stratified random design
    - NMFS shellfish strata plus SAMS areas included in survey domains
  - Allocation
    - Area, prior year catch data (biomass, number)
- Automated Data acquisition system
- Survey dredge performance monitored
- All other protocols remained the same
  - Tow a survey dredge & commercial dredge simultaneously
    - Survey dredge 8 ft in width, 2 in rings & 1.5 in diamond mesh liner
    - Commercial dredge varies by vessel and area

## **Biomass Estimation**

Swept area method is used to calculate biomass estimates (Cochran, 1997)

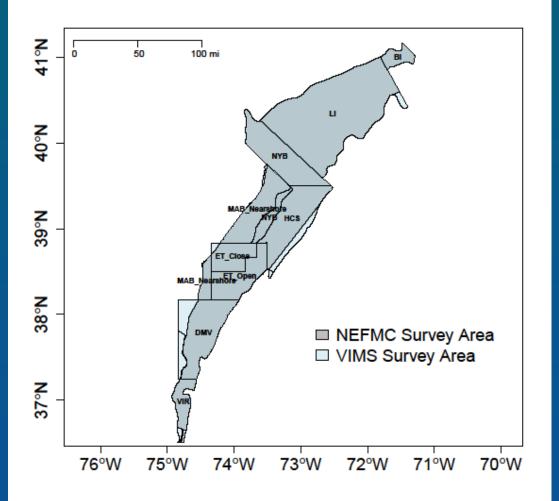
- Area swept per tow (*a<sub>s</sub>*)
  - Navigational info
  - Tilt sensor
- Catch weight per tow (C<sub>h</sub>)
  - Expanded length frequencies
  - Length-weight relationship (SARC 65 or determined by PDT)
  - Selectivity (Yochum and DuPaul, 2008)
- Efficiency (*E<sub>s</sub>*)
  - Values from SARC 59 (2014)
    - 65%Commercial Dredge
    - 40% NMFS Survey Dredge
- L = # of strata
- n = # of stations in stratum h
- h = stratum
- i = station i in stratum h
- s = subarea s in survey of interest
- $A_s = area of survey of interest in subarea s$
- $E_s = gear efficiency estimate for subarea s$
- $\bar{a}_s$  = mean area swept per tow in subarea s
- $\hat{B}_s =$ total biomass in subarea s
- $\bar{C}_s$  = stratified mean biomass caught per tow for subarea s
- $\overline{C}_{h,s}$  = mean biomass caught per tow in stratum h for subarea s
- $W_h = \text{ proportion of survey/subarea in stratum } h$

Stratified mean biomass per tow in stratum and subarea of interest

VIVIS

$$\bar{C}_{h,s} = \frac{1}{n_h} \sum_{i=1}^h C_{i,h,s}$$
$$Var(\bar{C}_{h,s}) = \frac{1}{n_h(n_h - 1)} \sum_{i=1}^{n_h} (C_{i,h,s} - \bar{C}_{h,s})^2$$

Stratified mean biomass per tow in subarea of interest

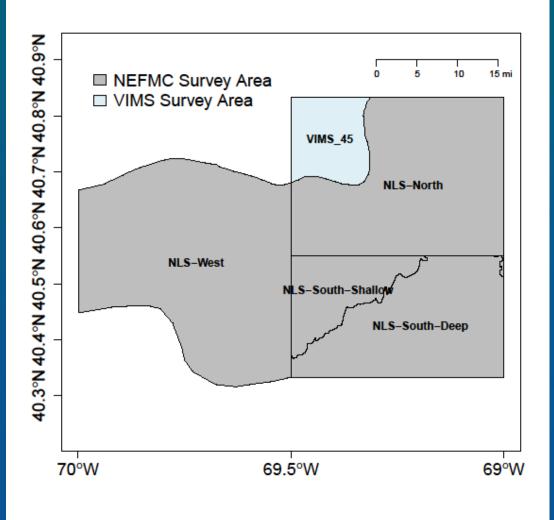

$$\bar{C}_{s} = \sum_{h=1}^{L} W_{h} \cdot \bar{C}_{h,s} \quad Var(\bar{C}_{s}) = \sum_{h=1}^{L} W_{h}^{2} \cdot Var(\bar{C}_{h})$$

Total biomass in subarea of interest

$$\widehat{B_s} = \left( \frac{\left( \frac{\overline{C_s}}{\overline{a_s}} \right)}{E_s} \right)_{A_s} \quad Var(\widehat{B_s}) = Var(\overline{C_s}) \cdot \left( \frac{A_s}{\overline{a_s}} \right)^2$$



### 2019 SAMS Areas

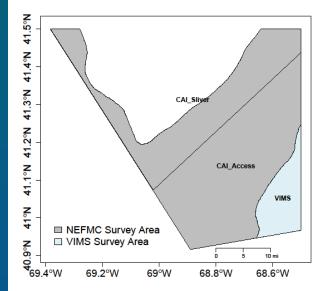


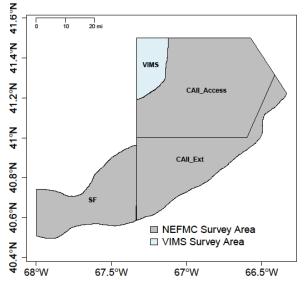

#### MAB Survey

- 9 SAMS Areas
  - Only minor changes to some area names
- VIMS surveys outside of areas & biomass in VIMS areas is included in the closest SAMS Area



#### 2019 SAMS Areas



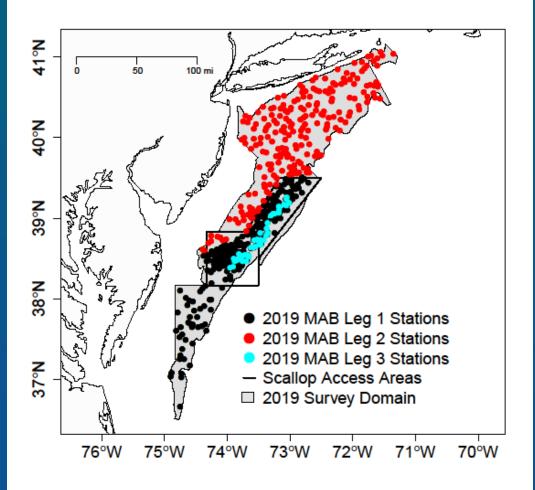


#### NL Survey

- 4 SAMS Areas
- 2018 Ext SAMS Area included in GSC
- VIMS surveys outside of areas & biomass in VIMS areas is calculated as a separate area



#### 2019 SAMS Areas






#### **CAI II Survey**

- CAI 2 SAMS
   Areas
- CAII 3 SAMS
   Areas
- Only changes to names
  - VIMS surveys outside of areas & biomass in VIMS areas is calculated as separate areas



#### 2019 VIMS-Industry Cooperative Surveys MAB

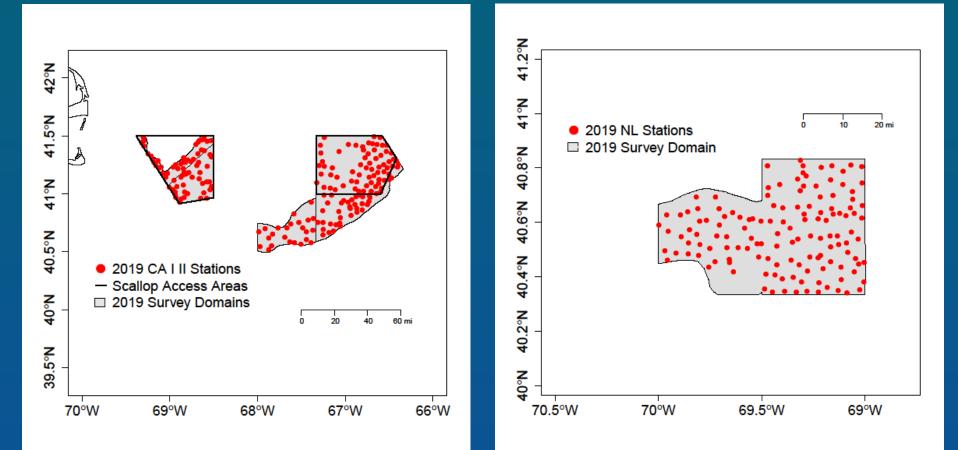


First Leg

- F/V Italian Princess
  - 5/10/19 5/19/19

• 225 Stations

#### Second Leg


- F/V Carolina Capes II
  - 5/22/19 6/2/19
    - 225 Stations

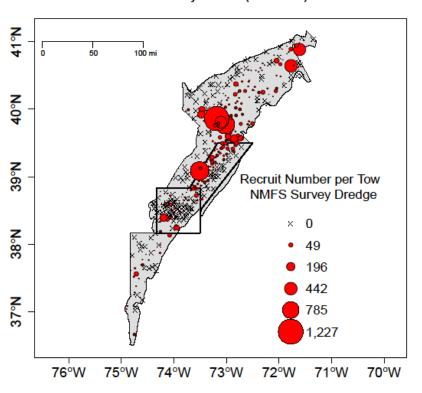
#### **Third Leg**

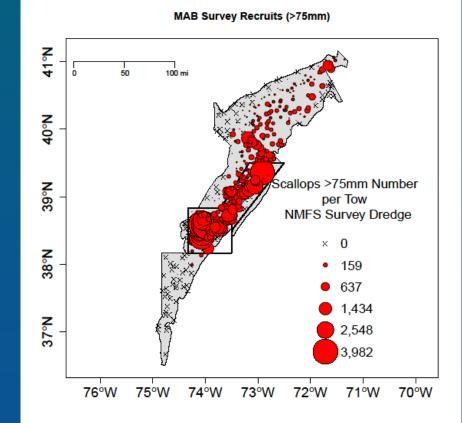
- F/V Anticipation
- 8/12/19 8/15/19
- 39 Stations reoccupied from Leg 1

## Total 450 Stations

# 2019 VIMS-Industry Cooperative Surveys CA I II and NL




- F/V Polaris
- 6/7/19 6/14/19
  - 200 Stations

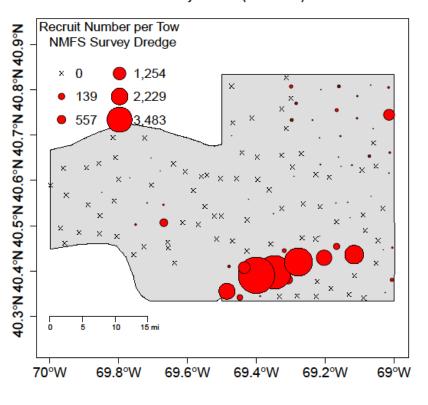

- F/V Socetean
- 7/24/19 7/31/19
  - 135 Stations

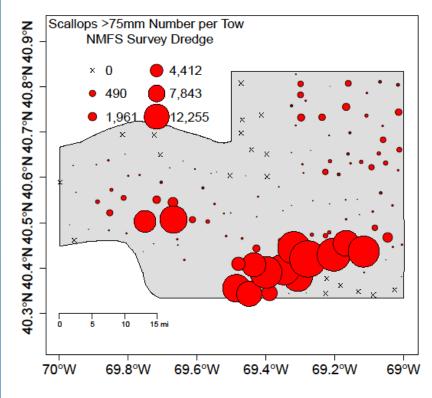


#### 2019 MAB Survey Scallop Distribution

MAB Survey Recruits (35 - 75mm)

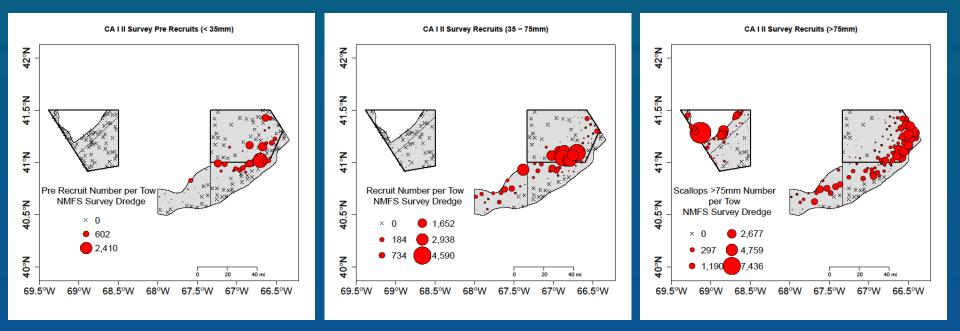





#### 2019 NL Survey Scallop Distribution

NL Survey Recruits (35 - 75mm)


NL Survey Recruits (>75mm)



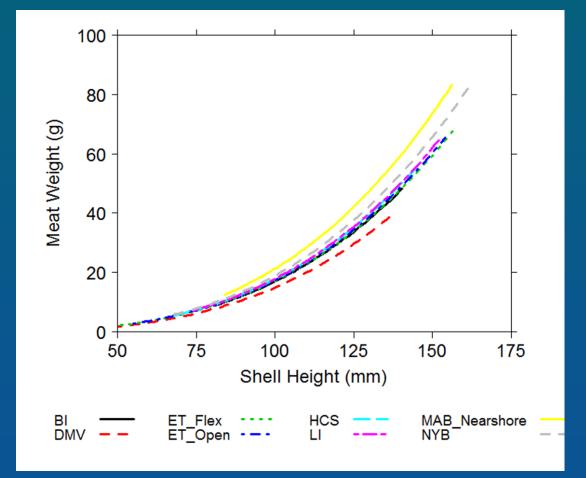




### 2019 CA I II Survey Scallop Distribution



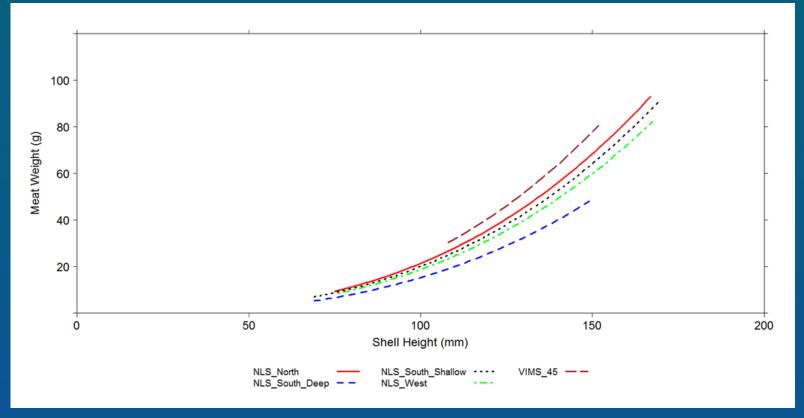



## **SHMW Relationship**

- SHMW samples (meat & gonad weight) were taken from all stations that had scallops (15/station):
  - MAB Survey: 5,510 (377 stations)
  - CA I II Survey: 2,350 (174 stations)
  - NL Survey: 1,989 (124 stations)
- The objective is to construct a model to predict meat weight based on a suite of potential covariates (i.e. shell height, depth, SAMS area, sex, disease...)
- Average depth was calculated for each tow from tilt sensor
- A GLMM was used to fit model (Gamma distribution, log link, random effect at the station level) with R v 3.3.1 Package lme4



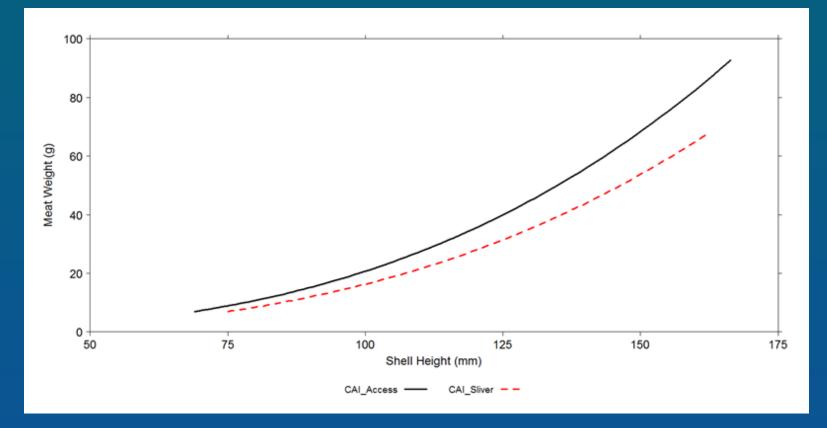



#### 2019 MAB Survey SHMW Results



- Majority of SAMS Areas have similar SHMW relationship
- DMV has the smallest meat weight at a given shell height

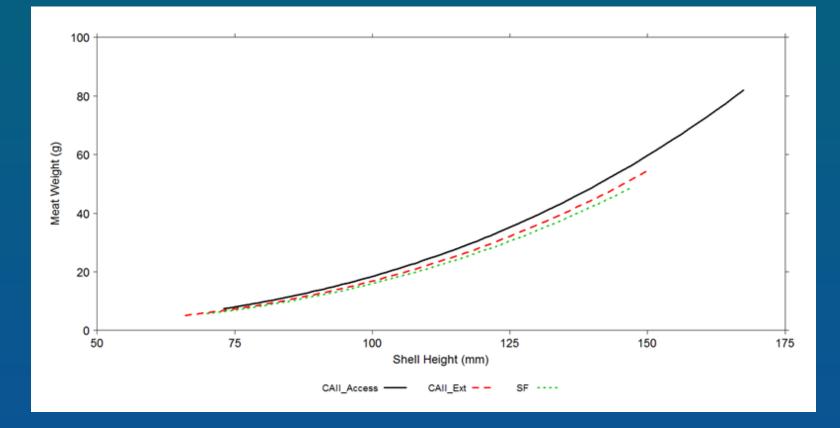



#### 2019 NL Survey SHMW Results



- Similar trend to previous years for the South Deep SAMS Area having the lowest meat weight at shell height
- South Deep SAMS only area significantly different than reference area: NLS-North

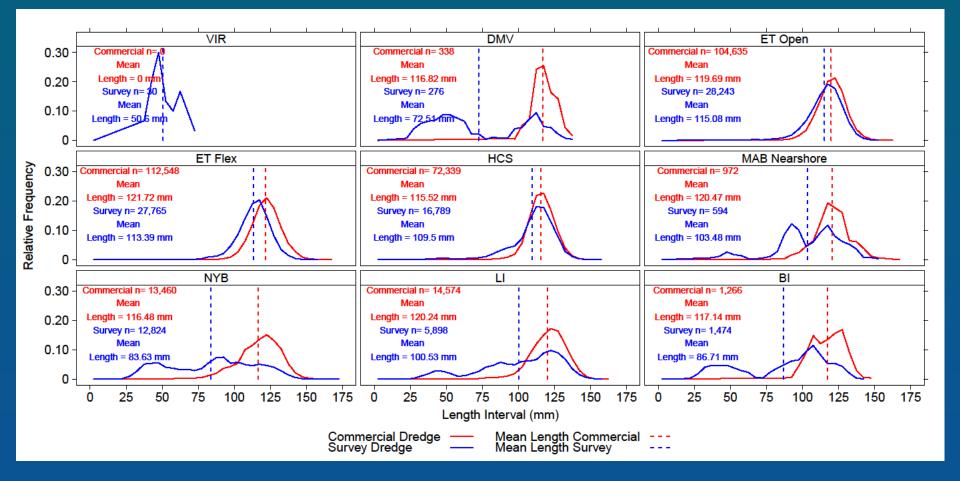



#### 2019 CA I Survey SHMW Results



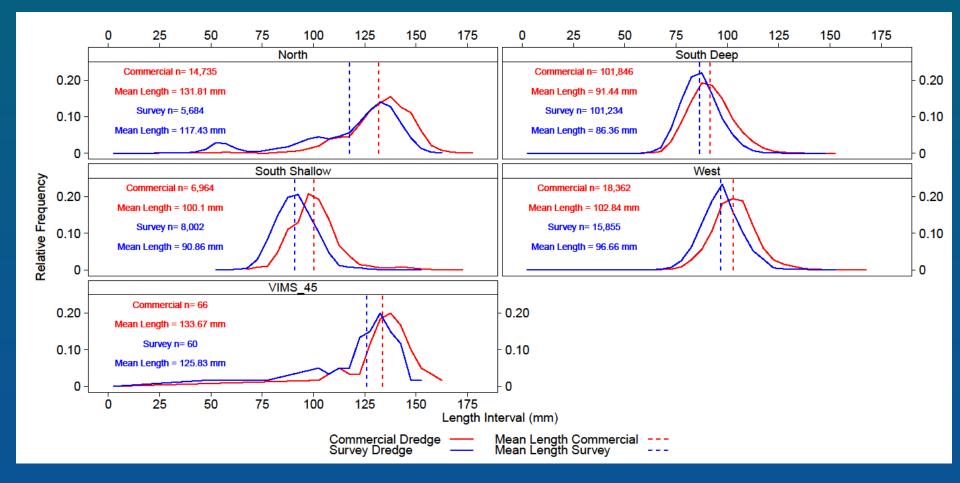
- CAI Access SAMS Areas significantly different from Sliver SAMS Area
- Likely a function of average depths for each subarea, as well as the temporal spread of the sampling




#### 2019 CAll Survey SHMW Results

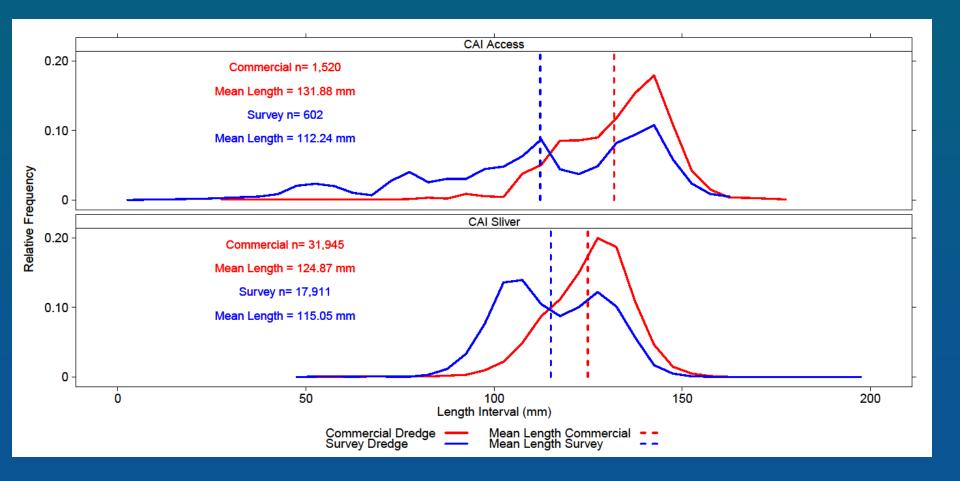


• Extension and Open Area SF SHMW curves are lower than the Northern Access Area



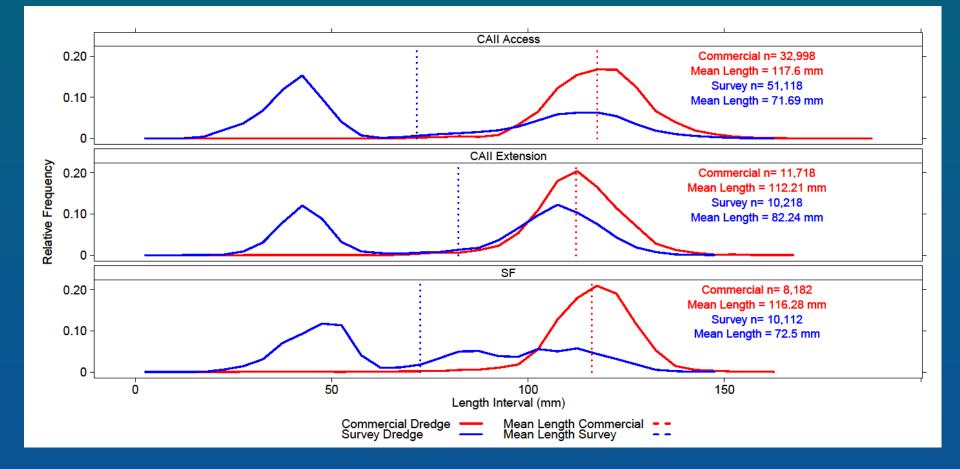

#### 2019 MAB Survey Length Frequency- SAMS Areas






### 2019 NL Survey Length Frequency- SAMS Areas






### 2019 CA I Survey Length Frequency- SAMS Areas





### 2019 CA II Survey Length Frequency- SAMS Areas





### 2019 CA II Survey Recruitment



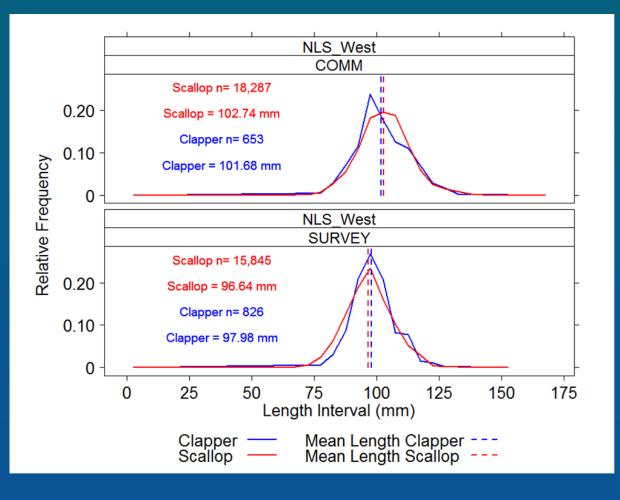


## 2019 VIMS-Industry Cooperative Surveys Total Biomass Survey Gear – SAMS Areas

| SAMS Area         | Total Biomass<br>(mt) | SE Biomass<br>(mt) | CV Biomass<br>(mt) | Density<br>(scal/m^2) | Avg MW (g) | Total Number  |
|-------------------|-----------------------|--------------------|--------------------|-----------------------|------------|---------------|
| VIR               | 13.76                 | 1.12               | 20.29              | 0.00                  | 2.98       | 4,182,976     |
| DMV               | 203.02                | 43.41              | 53.46              | 0.01                  | 10.48      | 20,305,939    |
| ET Open           | 15,104.89             | 896.65             | 14.84              | 0.30                  | 25.84      | 592,011,891   |
| ET Flex           | 13,528.87             | 1,174.25           | 21.70              | 0.44                  | 25.46      | 523,603,853   |
| HCS               | 8,544.00              | 774.62             | 22.67              | 0.13                  | 22.63      | 380,404,883   |
| MAB Nearshore     | 1,264.53              | 180.52             | 35.69              | 0.02                  | 23.67      | 53,427,827    |
| NYB               | 7,424.97              | 522.70             | 17.60              | 0.12                  | 14.84      | 537,825,315   |
| LI                | 9,079.02              | 349.85             | 9.63               | 0.03                  | 22.44      | 407,307,126   |
| BI                | 1,514.65              | 254.05             | 41.93              | 0.11                  | 17.33      | 94,885,840    |
|                   |                       |                    |                    |                       |            |               |
| NLS North         | 3,368.23              | 209.81             | 15.57              | 0.08                  | 41.26      | 81,516,050    |
| NLS South Deep    | 11,897.84             | 1,181.65           | 24.83              | 1.62                  | 10.11      | 1,176,063,622 |
| NLS South Shallow | 1,721.07              | 425.60             | 61.82              | 0.40                  | 14.64      | 117,563,486   |
| NLS West          | 3,276.12              | 663.54             | 50.63              | 0.20                  | 16.68      | 195,268,579   |
| VIMS 45           | 82.57                 | 29.51              | 89.33              | 0.01                  | 49.51      | 1,667,620     |
|                   |                       |                    |                    |                       |            |               |
| CAI Access        | 693.40                | 83.55              | 30.12              | 0.02                  | 35.57      | 18,434,122    |
| CAI Sliver        | 7,856.85              | 911.86             | 29.01              | 0.32                  | 29.54      | 258,991,330   |
| CAII Access       | 20,689.43             | 1,129.01           | 13.64              | 0.56                  | 15.49      | 1,670,993,750 |
| CAII Ext          | 5,567.79              | 565.55             | 25.39              | 0.17                  | 17.49      | 312,054,690   |
| SF                | 6,437.53              | 646.95             | 25.12              | 0.29                  | 12.15      | 529,788,692   |

## 2019 VIMS-Industry Cooperative Surveys Exploitable Biomass Commercial Gear - SAMS Areas

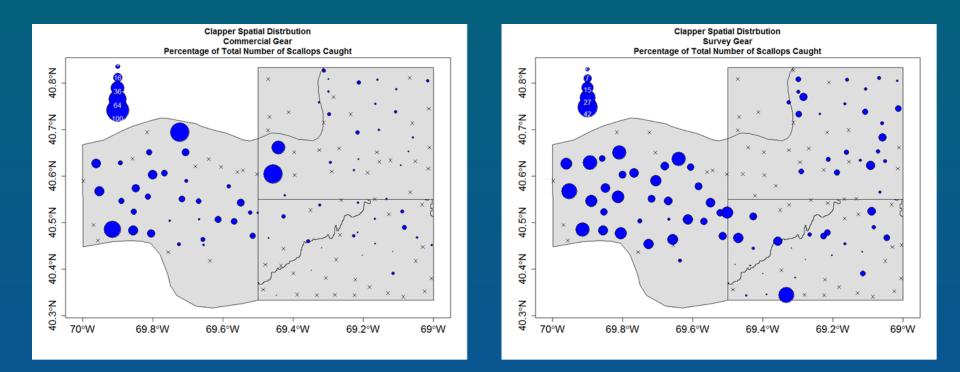
| SAMS Area         | Exp Biomass<br>(mt) | SE Biomass<br>(mt) | CV Biomass<br>(mt) | Density<br>(scal/m^2) | Avg MW (g) | Exp Number     |
|-------------------|---------------------|--------------------|--------------------|-----------------------|------------|----------------|
| VIR               | 0.00                | 0.00               | 0.00               | 0.00                  | 0.00       | 0.00           |
| DMV               | 173.98              | 66.99              | 59.24              | 0.00                  | 26.38      | 6,574,359.16   |
| ET Open           | 18,883.50           | 1,437.89           | 11.71              | 0.37                  | 29.10      | 639,647,357.29 |
| ET Flex           | 18,691.29           | 2,682.01           | 22.08              | 0.54                  | 31.25      | 601,828,611.86 |
| HCS               | 10,986.92           | 1,122.82           | 15.72              | 0.16                  | 25.79      | 428,387,241.60 |
| MAB Nearshore     | 861.19              | 192.73             | 34.43              | 0.01                  | 34.06      | 25,293,944.23  |
| NYB               | 3,880.14            | 264.69             | 10.49              | 0.03                  | 31.02      | 127,356,560.41 |
| LI                | 9,437.00            | 546.96             | 8.92               | 0.02                  | 33.50      | 282,714,230.41 |
| BI                | 705.68              | 128.19             | 27.95              | 0.03                  | 32.26      | 21,781,182.10  |
|                   |                     |                    |                    |                       |            |                |
| NLS North         | 4,118.83            | 339.75             | 12.69              | 0.07                  | 54.68      | 75,192,779     |
| NLS South Deep    | 2,200.75            | 396.60             | 27.73              | 0.21                  | 14.63      | 150,332,552    |
| NLS South Shallow | 448.49              | 115.78             | 39.72              | 0.07                  | 23.26      | 19,279,540     |
| NLS West          | 1,080.04            | 308.25             | 43.91              | 0.05                  | 22.19      | 47,986,968     |
| VIMS_45           | 37.93               | 21.70              | 88.02              | 0.00                  | 58.85      | 644,404        |
|                   |                     |                    |                    |                       |            |                |
| CAI Access        | 957.27              | 135.98             | 21.85              | 0.01                  | 51.91      | 18,194,175     |
| CAI Sliver        | 6,438.48            | 1,076.98           | 25.73              | 0.20                  | 39.34      | 162,369,294    |
| CAII Access       | 9,690.29            | 817.91             | 12.99              | 0.11                  | 38.06      | 244,325,929    |
| CAII Ext          | 3,258.13            | 486.51             | 22.97              | 0.05                  | 32.06      | 100,845,369    |
| SF                | 4,193.63            | 704.08             | 25.83              | 0.07                  | 32.86      | 127,630,804    |




## SARC 65 Total Biomass Estimates Compared to VIMS 2016-19 Estimates NL

| SAMS Area         | Total Biomass (mt)-<br>SARC 65 | Total Biomass (mt)<br>VIMS 2016-19 |  |
|-------------------|--------------------------------|------------------------------------|--|
| NLS North         | 3,613.91                       | 3,368.23                           |  |
| NLS South Deep    | 11,955.05                      | 11,987.84                          |  |
| NLS South Shallow | 2,402.17                       | 1,721.06                           |  |
| NLS West          | 4,732.83                       | 3,276.12                           |  |
| VIMS 45           | 90.47                          | 82.58                              |  |




#### **NLS West Clappers**



- Observed large quantities of clappers in the NLS-West SAMS Area
- Maybe an indication of higher than expected discard and/or incidental mortality.
- This information may provide insight into potential fishery behavior in the South Deep SAMS Area in the future, due to the size range of scallops in this SAMS Area.



#### **NLS West Clappers**



- The percentage of clappers in the catch was greatest in the NLS-West SAMS Area for both gears
- Percentage of clappers in both dredges ranged from 1 to 26%.



#### Acknowledgements

- The owners, captains and crews:
  - F/V Carolina Capes II
  - F/V Italian Princess
  - F/V Polaris
  - F/V Socetean
- Scientific Staff:
  - Lee Rollins, Kelly Lewis, Victoria Thomas, and Sarah Borsetti
- Reidar's Manufacturing Inc.
- Support from NMFS NEFSC: Dvora Hart and Pete Chase.
- Funding through Sea Scallop RSA program.



