# A Bayesian State-Space Approach to Improve Biomass Projections for Managing New England Groundfish

JOE LANGAN

CHRIS LEGAULT, GAVINO PUGGIONI, JASON MCNAMEE, & JEREMY COLLIE

# Acknowledgements

NMFS-Sea Grant Joint Fellowship in Population & Ecosystem Dynamics

New England Fishery Management Council







### Motivation

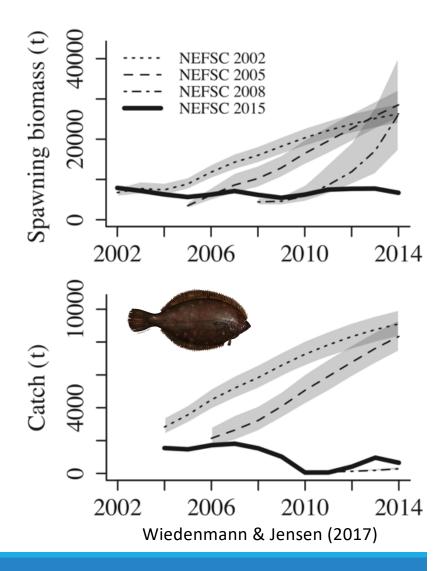
Stock biomass forecast errors have led to:

- Unintentional overfishing
- Sharp quota reductions
- Decreased stakeholder confidence in the management process

Lack of consensus on index-based approaches

Can we improve biomass predictions?

• Can we shorten prediction windows?



# Roadmap

- Dynamic Linear Models (DLMs)
- II. Index-Based Approach
- III. Index-Based Model Stress Tests
- IV. Index-Based Methods Working Group Results
- V. Extended DLM approaches
- VI. Future Work

# What is a dynamic linear model (DLM)?

SI: survey index

q: catchability

 $\nu$ : observation error

 $\omega$ : evolutions

V: observation error

variance

*W*: evolution variance

$$SI_t = qSSB_t + \nu_t \qquad \nu_t \sim N(0, V)$$

$$SSB_t = SSB_{t-1} + \omega_t \quad \omega_t \sim N(0, W)$$

# What is a dynamic linear model (DLM)?

*SI*: survey index

*q*: catchability

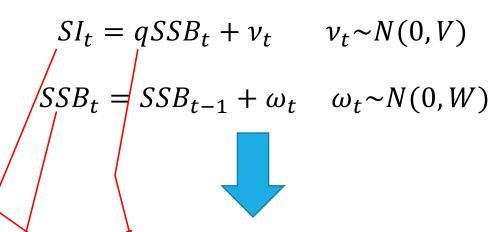
 $\nu$ : observation error

 $\omega$ : evolutions

*V*: observation error

variance

*W*: evolution variance



Observation Equation

**State Equation** 

$$y_t = F_t \theta_t + \nu_t \qquad \nu_t \sim N(0, V_t)$$

$$\theta_t = G_t \theta_{t-1} + \omega_t \quad \omega_t \sim N(0, W_t)$$

y: response variable

 $\theta$ : state variables

*F*: observation matrix

*G*: evolution matrix

Fit by MCMC (Gibbs Sampler)

# Why DLMs?

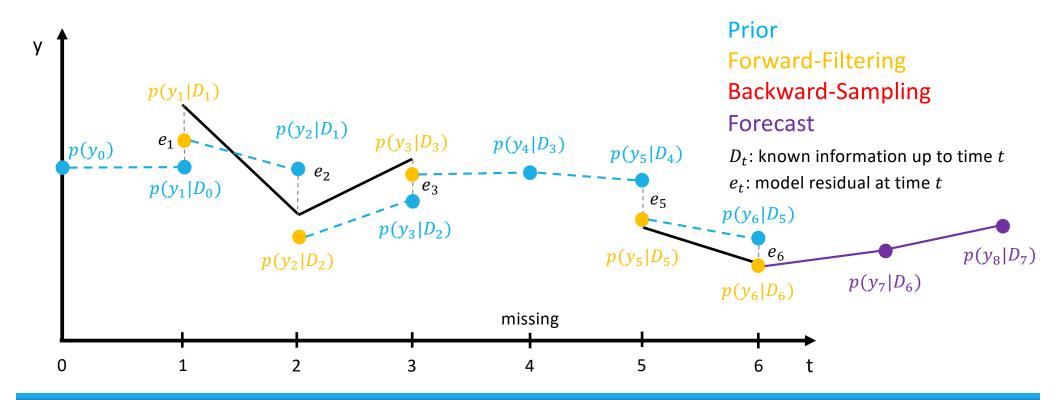
#### Flexible!

- Can handle dynamic coefficients/errors, interventions, and autocorrelation
- Capture unobserved processes

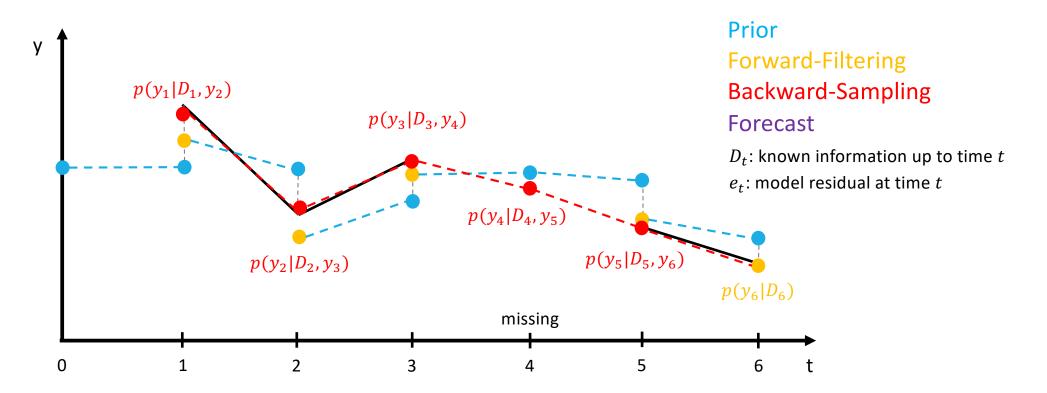
Missing data estimated from the predictive distribution

Fit and forecasts are easily updated

### Fitting DLMs: Forward Filtering Backward Sampling



### Fitting DLMs: Forward Filtering Backward Sampling



# Why DLMs?

#### Flexible!

- Can handle dynamic coefficients/errors, interventions, and autocorrelation
- Capture unobserved processes

Missing data estimated from the predictive distribution

Fit and forecasts are easily updated

Can incorporate environmental data, demographic information, multiple surveys, multispecies data

Imperfect catch data is ok

# Basic Index-Based Approach

**Survey Index = Trend + Catch Regression + Error** 

#### Trend options

- Random walk
- Dynamic trend

#### **Catch Regression**

- Use catch anomalies by differencing out the mean relative catch rate
- Catch  $\sim \beta$  survey index + intercept + anomalies

# Basic Index-Based Approach

#### Survey Index = Trend + Catch Regression + Error

Example model: Dynamic trend + Catch Anomaly Regression

*SI*: survey index

 $\theta_{int}$ : intercept of dynamic

trend

 $heta_{trend}$ : slope of dynamic trend

 $\beta_{CA}$ : Regression coefficient on catch anomalies

 $\nu$ : observation error

 $\omega$ : evolutions

*V*: observation error

variance

W: evolution variance

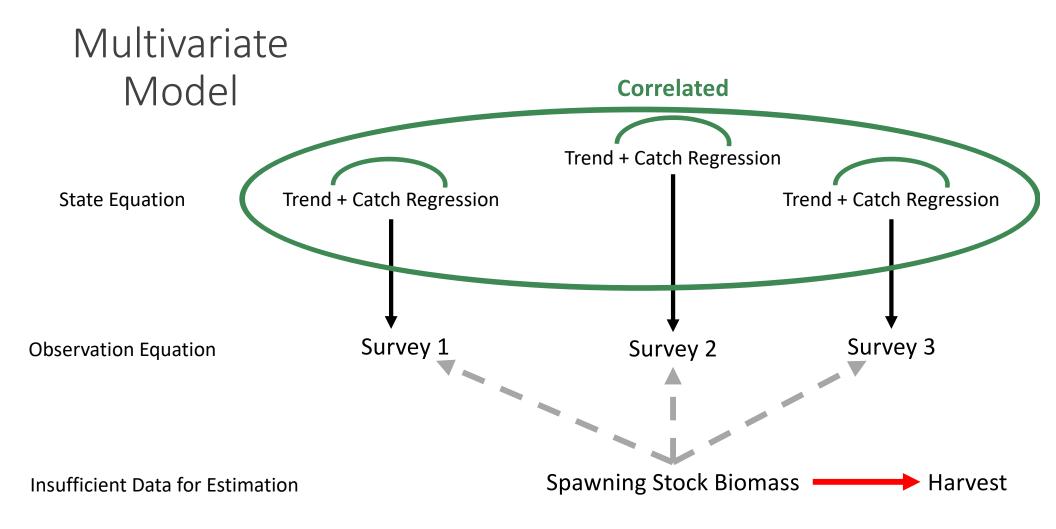
$$SI_t = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \theta_{int,t} & \theta_{trend,t} & \beta_{CA,t} \end{bmatrix}' + \nu_t \qquad \nu_t \sim N(0, V), \ V \sim IG(a, b)$$

$$\begin{bmatrix} \theta_{int,t} \\ \theta_{trend,t} \\ \beta_{CA,t} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \theta_{int,t-1} \\ \theta_{trend,t-1} \\ \beta_{CA,t-1} \end{bmatrix} + \omega_t \qquad \omega_t \sim N(\mathbf{0}, \mathbf{W}), \ \mathbf{W} \sim IW(\mathbf{\Psi}, v)$$

#### **Priors**

State Variables: approximate guesses with large variance

Variances: split total data variance between observation errors and evolutions



# Example: GB Cod

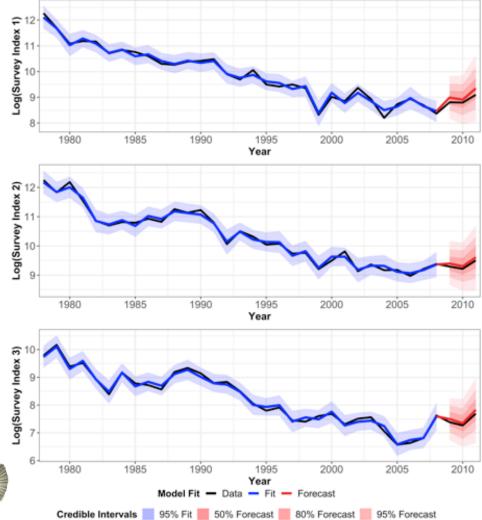
3 simulated surveys

Constant M = 0.2

Random Walk + Regression on Catch Anomalies

Retrospective forecasts





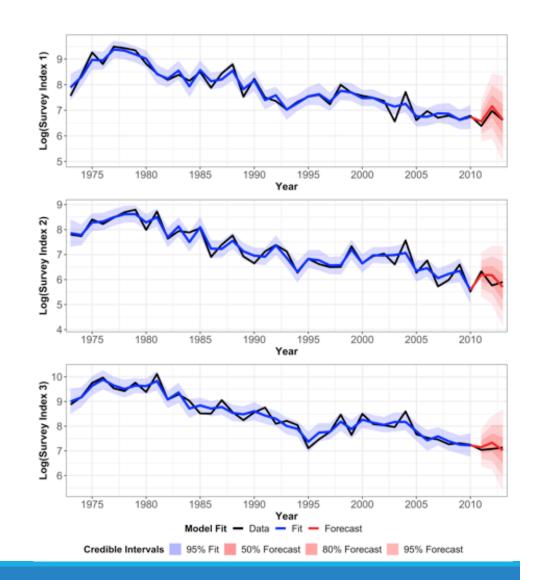
# Example: GB Yellowtail

3 simulated surveys

M ramp from 0.2 to 0.4

Dynamic trend + Regression on Catch Anomalies



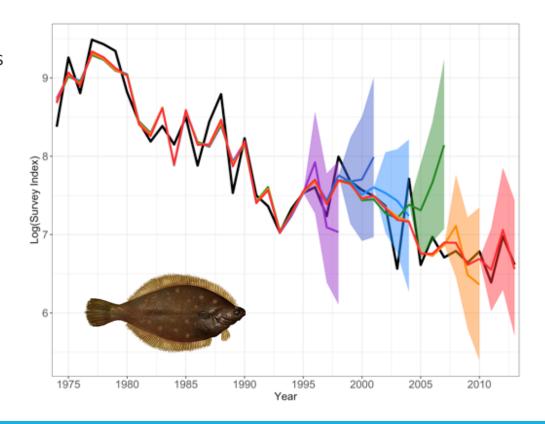


# GB Yellowtail Retrospective Peels

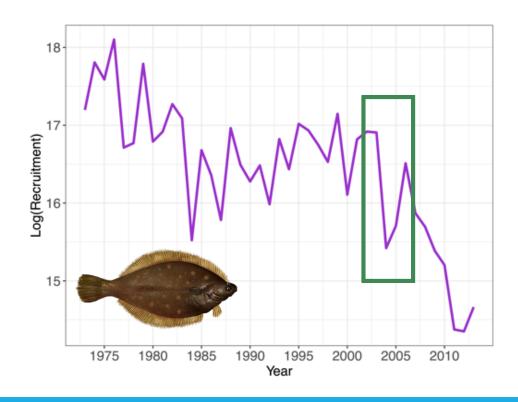
Sequential model fits every 3 years in colors

Forecasts shown with 80% credible interval

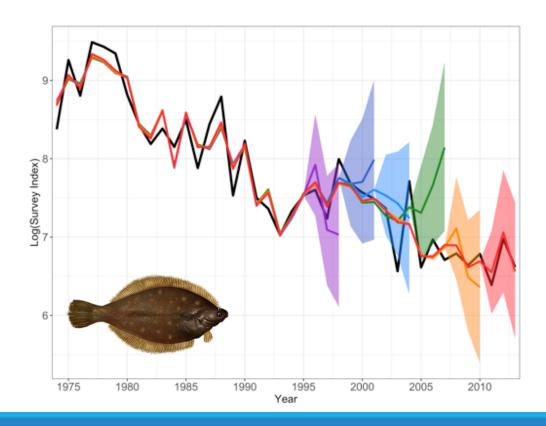
Green forecast?



# GB Yellowtail Retrospective Peels



# GB Yellowtail Retrospective Peels



# **Preliminary Conclusions**

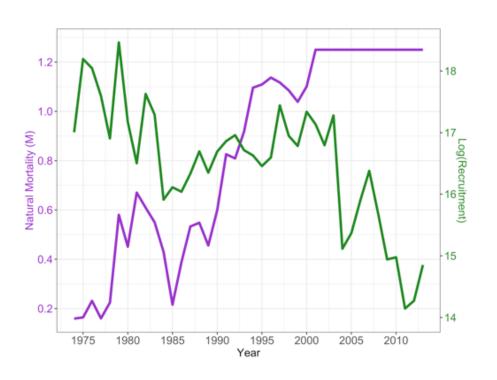
#### <u>Advantages</u>

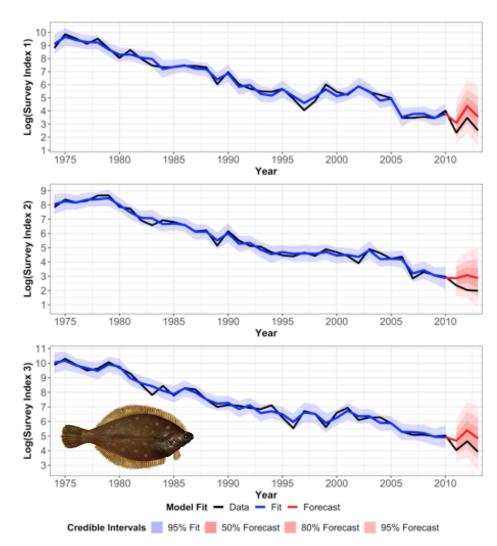
- Flexible model structure that can be tailored to a target stock
- Makes no assumptions about population dynamics or catch data
- Can leverage multiple abundance indices to improve fit
- Provides probabilistic forecasts to develop catch advice and assess risk
- Promising forecast performance in simulation

#### **Challenges**

- Allocation of variance between observation errors and evolutions
  - More data (longer time series, more abundance indices) helps
- Basic model formulation cannot "see" changes coming in the population

# Large Change in Natural Mortality





### High Measurement Error

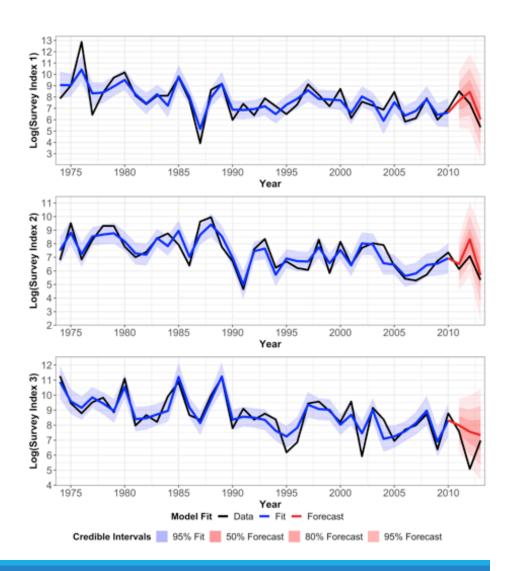
Survey CVs: 1.5-2.0

Actual: 0.3-0.4

DLM has difficulty allocating variance

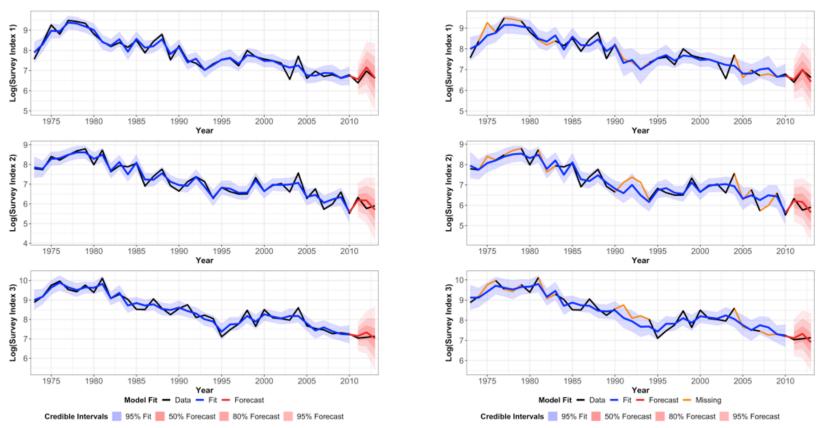
Solution: alter prior weights





# Frequent Missing Data (20%)





# Index-Based Methods Working Group

#### Simulation experiment based on WHAM operating model

- Base period of 50 years, two survey indices
- Fit IBM to "observed" data from WHAM, develop catch advice for 2 years ahead
- WHAM updates population based on catch advice for 40 years

#### Variety of scenarios

- Overfishing for half or all of base period
- Shifts in fishery selectivity
- Retrospective errors due to changing M or unaccounted catch
- Take catch advice from IBM or multiply catch advice by 75%

Simulate each scenario with each IBM up to 1000 times

## DLM Set-up For Simulation Experiment

Model: Dynamic trend + regression on catch anomalies

- No ability to test model structures or priors
- "Hands off" experiment

Catch advice: set harvest such that trajectory of mean forecast will get population to reference level in ~10 years

- No use of uncertainty
- Reference level: 75<sup>th</sup> percentile of observed data

### IBMWG DLM Performance

DLM was one of the top performing methods (long-term)

Exact ranking varied by category of performance metrics

DLM had similar performance regardless of retrospective error source

DLM produced fairly stable catch advice over the long-term

Chosen catch advice decision rule was not optimal

- $^{\circ}$  75  $^{\text{th}}$  percentile was poor estimate of  $B_{\text{MSY}}$  particularly when overfishing occurred throughout base period
- Because 75<sup>th</sup> percentile was recalculated every time new "survey" data was available, reference level was a moving target

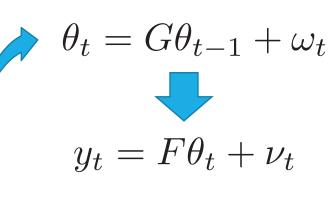
The DLM framework showed great promise!

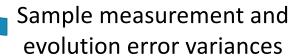


# "Stage-Based" Hierarchical Model

### Gibbs Sampler

**Recruits** 





**Post-Recruits** 

$$\theta_t = G\theta_{t-1} + \omega_t$$

$$y_t = F\theta_t + \nu_t$$

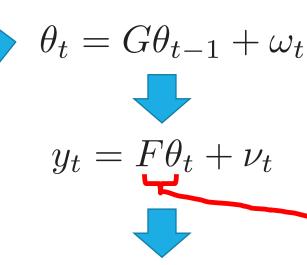
Sample measurement and evolution error variances

# "Stage-Based" Hierarchical Model

### Gibbs Sampler

Covariate

**Recruits** 



Sample measurement and evolution error variances

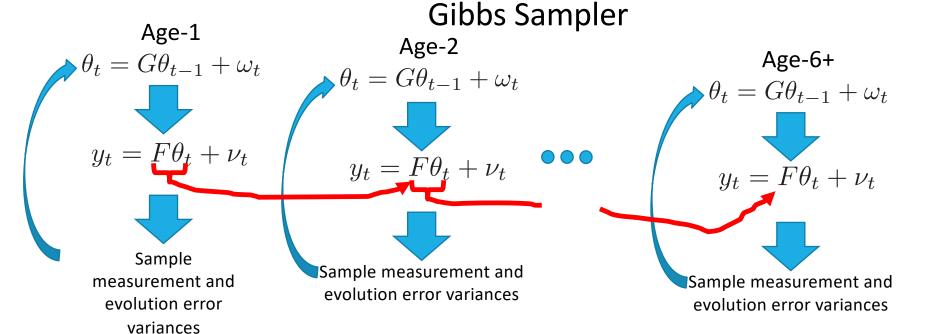
**Post-Recruits** 

$$\theta_t = G\theta_{t-1} + \omega_t$$

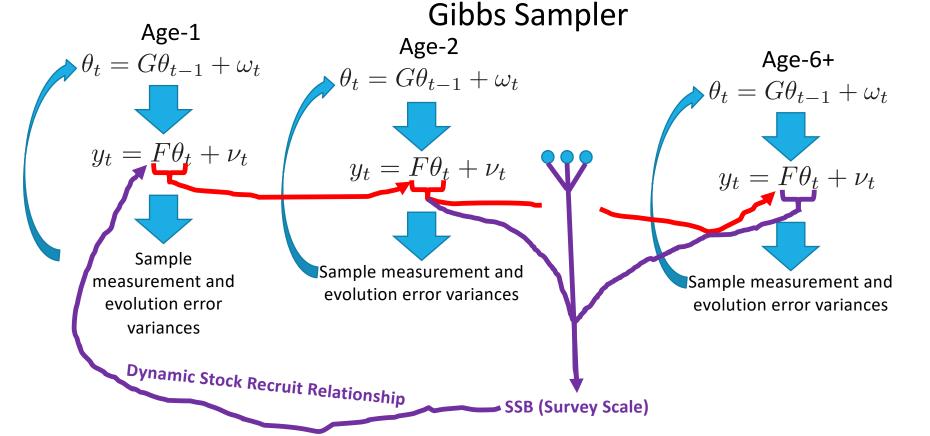
$$y_t = F\theta_t + \nu_t$$

Sample measurement and evolution error variances

# "Age-Based" Hierarchical Model

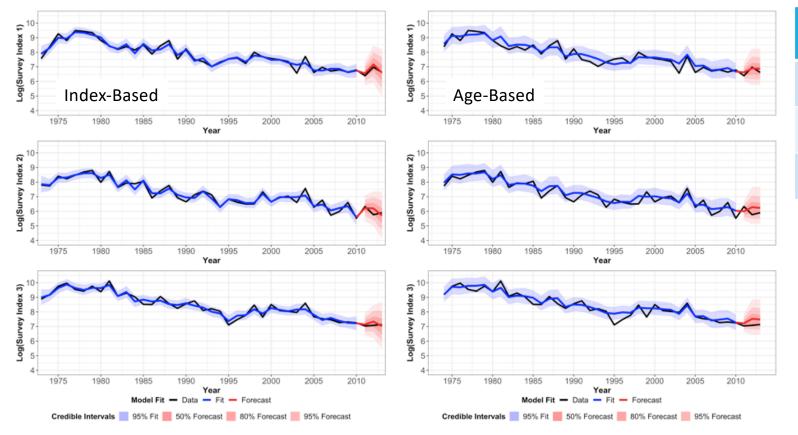


# "Age-Based" Hierarchical Model



# Example: GB Yellowtail

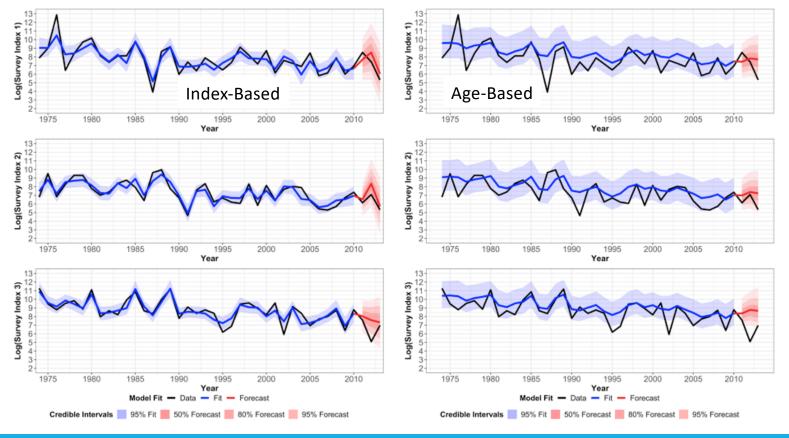




| Data     | Correlation<br>With SSB |
|----------|-------------------------|
| Observed | 0.8618                  |
| IB Fit   | 0.9143                  |
| AB Fit   | 0.9337                  |

Age-based model yields 1.5x improvement over Index-based model

### Example: GB Yellowtail, High Measurement Error



| Data     | Correlation<br>With SSB |
|----------|-------------------------|
| Observed | 0.1969                  |
| IB Fit   | 0.2653                  |
| AB Fit   | 0.4922                  |

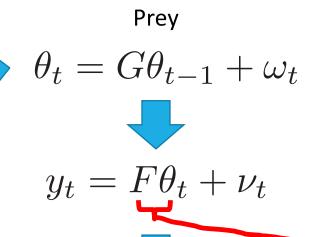
Age-based model yields 3.6x improvement over Index-based model



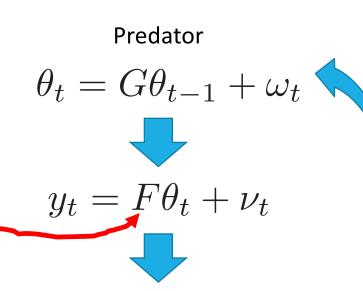
# Multispecies Hierarchical Model

### Gibbs Sampler

Covariate



Sample measurement and evolution error variances



Sample measurement and evolution error variances

### Conclusions

DLM framework provides a spectrum of customizable models

• Single survey index to multispecies, multi-survey model with environmental covariates

Index-Based DLM has shown very promising performance in simulation

DLMs are robust to common causes of forecast errors and other challenges

- Changing M
- Unaccounted catch
- Missing data

Including size or age-information appears to improve forecasting

Easily updated as new data becomes available

### Future Work

Explore model structures in extended models

Evaluate extended model performance

Construct model that estimates the true SSB

Multispecies models?

### Questions?

DLM framework provides a spectrum of customizable models

Single survey index to multispecies, multi-survey model with environmental covariates

Index-Based DLM has shown very promising performance in simulation

DLMs are robust to common causes of forecast errors and other challenges

- Changing M
- Unaccounted catch
- Missing data

Including size or age-information appears to improve forecasting

Easily updated as new data becomes available