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Abstract19

Age-based stock assessments are sometimes rejected by review panels due to large retrospec-20

tive patterns. When this occurs, data-limited approaches are often used to set catch advice,21

under the assumption that these simpler methods will not be impacted by the problems22

causing retrospective patterns in the age-based assessment. This assumption has never been23

formally evaluated. Closed-loop simulations were conducted where a known source of error24

caused a retrospective pattern in an age-based assessment. Twelve data-limited methods,25

an ensemble of a subset of these methods, and a statistical catch-at-age model with retro-26

spective adjustment were all evaluated to examine their ability to prevent overfishing and27

rebuild overfished stocks. Overall, none of the methods evaluated performed best across the28

scenarios. A number of methods performed consistently poorly, resulting in frequent and29

intense overfishing and low stock sizes. The retrospective adjusted statistical catch-at-age30

assessment performed better than a number of the alternatives explored. Thus, using a31

data-limited approach to set catch advice will not necessarily result in better performance32

than relying on the age-based assessment with a retrospective adjustment.33
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Introduction36

In the U.S., age-based, integrated, fisheries stock assessment models are frequently used to37

estimate annual stock abundance (biomass), fishing mortality rates, and management refer-38

ence points (Maunder and Punt 2013). These models must undergo peer review, where an39

independent panel of experts determines whether or not results from the model are suitable40

as the basis for determining stock status and for setting catch advice. There are a number41

of model diagnostics that are used to evaluate uncertainty and stability of assessment model42

results, but one that is commonly used and carries substantial weight during review is the43

retrospective pattern. A retrospective pattern is a systematic inconsistency among a series44

of sequential assessment estimates of population size (or other related assessment variables),45

based on increasing time periods of data used in the model fitting (Mohn 1999). These46

inconsistencies in assessment estimates are indicative of one or more mismatches between47

model assumptions and patterns in the data used to fit the model. Large or persistent ret-48

rospective patterns indicate an instability in model results, and may therefore be the basis49

for a peer review panel to determine that model results are not suitable for management50

purposes (Punt et al. 2020).51

Many stock assessments in the Northeast U.S. have a history of strong retrospective pat-52

terns, whereby estimates of biomass are typically revised downward and estimates of fishing53

mortality rate are revised upward as new data are added to the model (i.e., implying sys-54

tematic overestimation of biomass and underestimation of fishing mortality; (ICES 2020)).55

NOAA Fisheries, the New England Fishery Management Council, the Mid-Atlantic Fishery56

Management Council, and the Atlantic States Marine Fisheries Commission manage these57

stocks, and retrospective issues remain a challenge for managers when setting catch advice58

and tracking stock status. This problem has been particularly acute for, but not limited59

to, stocks in the New England groundfish complex (NEFSC 2002, 2005, 2008, 2015a, 2015b,60

2017, 2019; Deroba et al. 2010), managed under NOAA Fisheries and the New England61
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Council’s Northeast Multispecies (Groundfish) fishery management plan. Stock assessments62

exhibiting retrospective patterns can be found around the world and can be associated with63

a wide range of assessment approaches (ICES 2020).64

The magnitude of the retrospective pattern is typically measured with a statistic called65

Mohn’s rho (Mohn 1999). Mohn’s rho can be used to adjust terminal year estimates of66

biomass in anticipation that the retrospective pattern will persist, and some accounting for67

the pattern will provide a more accurate estimate. Stock assessments where the so-called68

rho-adjusted value is outside the 90% confidence interval of the terminal year estimate of69

spawning stock biomass (SSB) or fishing mortality rate are classified as strong retrospective70

patterns. In these cases, the rho-adjusted values are used for status determination and to71

modify the starting population for projections used to provide catch advice (Brooks and72

Legault 2016).73

There are many possible causes for retrospective patterns, but typically there is a temporal74

change in either the data or a model parameter that is not accounted for in the stock75

assessment model (Deroba 2014; Hurtado-Ferro et al. 2014; Legault 2020). The strong76

retrospective patterns seen in the region under study have required very large magnitudes of77

change in order to remove the retrospective pattern. For example, the scale of missing catch78

needed to be three to five times the reported catch, or natural mortality needed to increase79

from 0.2 to near 1.0 to reproduce observed retrospective patterns; the scales of these changes80

have not been deemed believable by review panels. Some approaches have been used to81

estimate missing catch (Van Beveren et al. 2017; Perretti et al. 2020) and increased natural82

mortality (Cadigan 2016; Rossi et al. 2019). However, identifying the correct source of the83

retrospective pattern is difficult and using the wrong fix can lead to poor management advice84

(Szuwalski et al. 2017). This is clearly an area where more research is needed, but currently85

addressing strong retrospective patterns is challenging.86

There is no formal criteria in the region for rejecting an assessment based on Mohn’s rho, but87
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large, positive values of rho for SSB, especially those persisting across several assessments,88

have played an important role in the rejection of recent age-based assessments, including At-89

lantic mackerel (Scomber scombrus), Georges Bank Atlantic cod (Gadus morhua), Georges90

Bank yellowtail flounder (Limanda ferruginea), and witch flounder (Glyptocephalus cynoglos-91

sus) (Deroba et al. 2010; Legault et al. 2014; NEFSC 2015a, 2015b). In each of these cases,92

and another where the assessment rejection was not based on the retrospective pattern (black93

sea bass, Centropristis striatus, NEFSC 2012), the Councils have relied on a variety of data-94

limited approaches for setting catch advice for these stocks (McNamee et al. 2015; NEFSC95

2015a, 2015b; Wiedenmann 2015). These approaches have all been ad-hoc, and a recent96

analysis suggested that some of the data-limited approaches may not be suitable for stocks97

in the Northeast U.S. with a history of high exploitation rates (Wiedenmann et al. 2019). In98

addition, large, positive retrospective patterns in SSB persist for a number of other stocks in99

the region (NEFSC 2019), raising concerns that additional stocks may rely on data-limited100

approaches in the future.101

Current practice in the region requires identification of a back-up assessment approach for102

all age-based assessments in case the age-based assessment is rejected during peer review.103

These back-up approaches are required to be simple enough that only minor review is needed104

so that management advice can continue to be provided for the stock. While these DLMs105

cannot provide stock status determinations in our study because they rely on ad hoc setting106

of reference points, they all can provide catch advice. Therefore, there is an immediate need107

to identify suitable data-limited approaches for setting catch advice for stocks with age-based108

assessments that did not pass review.109

We developed a closed-loop simulation (e.g., Punt et al. 2016; Huynh et al. 2022) to110

evaluate the suitability of alternative data-limited methods (DLMs) for setting target catches111

when age-based stock assessments fail. In particular, focus was placed on methods that use112

survey indices of abundance. The closed-loop simulation was designed to test the two most113

common hypothesized sources of retrospective pattern (missing catch or increases in natural114
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mortality), and to evaluate performance of various methods relative to exploitation history115

and changes in fishery selectivity. Results of this factorial simulation study are summarized116

for quantities of interest that impact fisheries management advice. The goal of this work is117

to examine the hypothesis that catch advice from DLMs is more robust to under-reported118

catch or changes in natural mortality than from a rho-adjusted statistical catch at age model.119

Methods120

Overview121

A closed-loop simulation was designed to approximate a process where an age-based assess-122

ment was rejected due to a retrospective pattern, requiring catch advice to be determined123

using a DLM. As such, the operating model (OM) used to define the “true” underlying bi-124

ological and fishery dynamics was also age-based. The OM was run for an initial 50 year125

period of time (called the base period) that controls the historical population dynamics and126

fishing pressure, and allows for sufficient data to be simulated in the observation model to127

be used in the different DLMs. After the base period, a given management approach (i.e.,128

DLM) was applied to set the target catch for the stock, which is then removed from the129

population. This process is repeated at a fixed interval for 40 years in what is called the130

feedback period. Multiple OMs were developed so that the performance of the DLMs could131

be compared among several sources of uncertainty that are especially common in the north-132

east U.S., but relevant more broadly. The set of OMs featured one of two possible patterns133

of time varying dynamics in the last 20 years of the base period, that if left misspecified as134

time invariant, would be sufficient to generate retrospective patterns resulting in the rejec-135

tion of an age-based stock assessment, requiring transition to a DLM. The details of these136

dynamics, and the suite of factors explored in the closed-loop simulation, are described in137

sections below.138

Operating and Observation Models139
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The Woods Hole Assessment Model (WHAM, Miller and Stock 2020; Stock and Miller 2021)140

was used as the basis for the OM in the closed-loop simulations. WHAM is an R package141

and the general model is built using the Template Model Builder package (Kristensen et al.142

2016). While WHAM can serve as a stock assessment model used to estimate parameters, it143

can also simulate the data needed for age-based stock assessments and DLMs given a range144

of input parameters. WHAM was used to simulate data with known properties during the145

base and feedback periods. Catch and index observations upon which the DLMs largely146

relied were simulated according to user supplied biological and fishery parameters for each147

scenario (see below). Catches during the feedback period were iteratively updated based on a148

DLM and harvest control rule that used the simulated observations to produce catch advice.149

Catch advice from a given combination of DLM and control rule was specified in two year150

blocks, a typical catch specification timeframe for New England and Mid-Atlantic Council151

managed fisheries. WHAM used these catches, along with the user supplied biological and152

fishery inputs, to have the simulated population respond to the DLM, thereby completing153

the closed-loop simulation aspect. A limit was placed on the maximum fishing mortality154

rate when the fishery attempted to remove the catch advice from the population during155

the feedback period. There was no implementation error in the removal of the catch advice156

otherwise, except when missing catch was the source of the retrospective pattern as described157

below.158

The age-structured OM had ten ages, with the oldest age being a plus group. Maturity- and159

weight-at-age were time and simulation invariant and reflected values observed for groundfish160

in the region (Table 1). The OM simulated catch and age composition data for a single fishery161

with logistic selectivity (Table 1; see below). Annual, total catch observations (metric tons)162

were simulated as lognormal deviations from the underlying “true” catches with a coefficient163

of variation (CV) equal to 0.1. Fishery age composition data were assumed to follow a164

multinomial distribution with an effective sample size (ESS) equal to 200. Two fishery165

independent surveys were simulated and were intended to represent the spring and fall,166
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coastwide bottom trawl surveys conducted in the region. Both surveys were assumed to have167

time invariant logistic selectivity and constant catchability. Annual survey observations were168

simulated as lognormal deviations from the underlying “true” survey catches with a CV of169

0.3 in the spring survey and 0.4 in the fall. Survey age composition data were assumed to170

follow a multinomial distribution with an ESS equal to 100 in both seasons.171

Annual recruitment was simulated as autoregressive, lag-1 (AR-1) deviations from an under-172

lying Beverton-Holt stock-recruitment relationship with steepness equal to 0.74. The degree173

of correlation in the AR-1 process equaled 0.4 with a conditional standard deviation about174

this relationship equal to 0.5. Unfished recruitment was time- and simulation invariant and175

equaled 10-million age-1 fish. These stock-recruitment values were based on an average of176

groundfish parameters estimated for the region.177

Data-Limited Methods Explored178

The range of DLMs evaluated was generally constrained to those that have been used or were179

considered plausible (e.g., based on data requirements) for the Northeast Shelf. Ultimately,180

thirteen DLMs were selected for evaluation. Although catch-curve analyses are not currently181

applied in the region, they were included here since age information is available for most of182

the stocks, and because Wiedenmann et al. (2019) showed they performed well in application183

to groundfish stocks. Two additional DLMs (Islope and Itarget) not currently used in the184

region were also evaluated, as these have been tested in other applications and shown promise185

(Geromont and Butterworth 2015a, 2015b; Carruthers et al. 2016; Wiedenmann et al.186

2019). An ensemble of models was also considered based on recent findings that improved187

performance can result from combining the results from multiple models (Anderson et al.188

2017; Rosenberg et al. 2018; Spence et al. 2018; Stewart and Hicks 2018). The catch189

advice from the ensemble approach equaled the median of the catch advice resulting from190

the range of methods included in the ensemble (Table 2). This assumes an equal weighting191

of ensemble members. The DynLin approach was excluded from the ensemble due to the192
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relatively long computing time required. Other methods were excluded (CC-FM, ES-FM,193

ES-Fstable) because they were slight variations of a more generic DLM (i.e., CC- and ES-194

) and including them all may have unduly overweighted the performance of the ensemble195

towards these methods. For the methods with multiple variations, the variant retained in196

the ensemble had superior performance than the alternatives based on preliminary results,197

or had already been considered for application in the region. The full range of methods198

included in this analysis were detailed below with equations (Table 2). Each method was199

applied to data that would lead to retrospective patterns in an age-based stock assessment200

and performance was evaluated using a range of metrics (see below).201

Each of the methods evaluated produces a single target catch value that was fixed over a202

two year interval. If the methods were being applied in year y, then target catches are set203

for years y + 1 and y + 2 (denoted Ctarg,y+1:y+2). In practice, the timing of setting target204

catches in the region generally occurs in late summer or early fall in between the spring and205

fall surveys, and before complete catch data are available. Therefore, in year y complete206

catch data are available through year y − 1, and survey data are available for the spring207

survey through year y and for the fall survey through year y − 1. Applications of DLMs in208

this region have used an average of the spring index in year y (Ispr,y) and the fall index in209

year y − 1 (Ifall,y−1) to reflect average abundance at the start of year y (Īy). For this study,210

the same 1 year lag was implemented for methods that use the average of both simulated211

indices to generate catch advice:212

Īy = Ifall,y−1+Ispr,y

2 .213

Control Rules214

Most DLMs do not have the ability to estimate a biomass reference point (e.g., BMSY ), which215

made consideration of so called biomass-based harvest control rules that reduce F or catch216

in response to estimated changes in relative stock status impossible. Although reference217

points can be created for DLMs, they typically rely on local expert judgment (Harford et al.218
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2021) and are geared towards either keeping the stock about where it is or else increasing it219

towards a relative amount that was thought to be good. Neither of these provide a proxy220

for maximum sustainable yield reference points, but might instead provide pretty good yield221

(Hilborn 2010).222

Lack of clarity exists, however, on whether the catch advice from DLMs should be used223

directly or reduced to account for uncertainty. In the U.S. management system, an overfishing224

limit is the catch that would result from applying FMSY , whereas an acceptable biological225

catch is a catch reduced from the overfishing limit to account for scientific uncertainty. Each226

DLM was evaluated using two harvest control rules: 1) the catch advice from a given DLM227

was applied directly and assumed to serve as a proxy for the catch associated with FMSY228

(catch multiplier = 1), and 2) the catch advice from a given DLM was reduced by 25%229

to account for unspecified scientific uncertainty (catch multiplier = 0.75). The case where230

catches were reduced by 25% was intended to reflect a common default control rule in the231

region that uses 0.75FMSY .232

Application of a Statistical Catch-at-Age Assessment (SCAA)233

A SCAA model was also applied to all scenarios to generate catch advice for comparison234

with the DLMs. Although virtual population analysis (VPA) is also used for some age-235

based assessments in the region, SCAA models are more widely used. Applications of the236

SCAA model assumed that the assessment had the correct underlying structure for selec-237

tivity, and CVs and ESS were specified at their true underlying values. The SCAA model238

estimated annual recruitment deviations assuming no underlying stock-recruit relationship,239

annual fully-selected fishing mortality rates, fishery and survey selectivity parameters (lo-240

gistic), abundance-at-age in year one of the period being assessed, and survey catchabilies.241

Mohn’s rho was calculated (7 year peels) for abundance at age for all model fits during the242

feedback period and used to retro-adjust abundance at age for projections (divided by one243

plus Mohn’s rho; (Brooks and Legault 2016)). Catch advice was determined by specifying244
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fully-selected F = 0.75F40%, always assuming M=0.2. All life history parameters were fixed245

at their correct value, except for the natural mortality rate when it was the source of the246

retrospective pattern.247

Study Design248

In addition to the two control rules applied for each DLM described above, three aspects of249

the OM were varied in a full factorial study design: fishing history, fishery selectivity, and250

cause of the retrospective pattern (Table 3). Two variants of fishing history were considered,251

with fully selected fishing mortality during the base period either constant at a level equal to252

2.5FMSY (always overfishing) or equaling 2.5FMSY in the first half of the base period then a253

knife-edged decline to FMSY for the second half of the base period. These patterns in fishing254

mortality rate were based on observed patterns for Northeast groundfish (Wiedenmann et255

al. 2019). These two different fishing intensities during the latter half of the base period led256

to different starting conditions for the feedback period.257

Two variations of the OM were considered with either time invariant, asymptotic, fishery258

selectivity in the base and feedback periods, or a change in selectivity after the first half259

of the base period so that the age at 50% selectivity increased from approximately 3.7 to260

5 (Table 1). The asymptotic selectivity pattern was based on Northeast groundfish fishery261

selectivity patterns. The change in the selectivity pattern when selectivity varied through262

time approximated an increase in mesh size in the fishery to avoid younger fish.263

Two different sources of stock assessment misspecification leading to retrospective patterns264

were considered, temporal changes in natural mortality and misreported catch. The degree265

to which natural mortality and unreported catch changed through time was determined266

by attempting to achieve an average Mohn’s rho of approximately 0.5 for SSB when an267

SCAA model (i.e., configured using WHAM) was used to fit the simulated data. We also268

fit the same SCAA configuration to data without misspecified M or catch to verify that269

retrospective patterns were not present on average (see Supplemental Materials Figure S1).270
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A third source of misspecification was also attempted, time varying survey catchability, but271

this source of misspecification was unable to produce severe enough retrospective patterns272

and was abandoned.273

For the natural mortality misspecification, the true natural mortality changed from 0.2274

to 0.32 in scenarios where the fishing history was always overfishing or from 0.2 to 0.36275

when the fishing history included a reduction from overfished to FMSY , with the differences276

between fishing histories necessary to produce the desired retrospective pattern severity (see277

Supplemental Materials Figures S2 and S3). In each case, natural mortality trended linearly278

from 0.2 to the higher value between years 31 and 40 of the base period and held constant279

at the higher level for years 41-50. Natural mortality remained constant at the higher level280

throughout the feedback period. Those DLMs that required natural mortality as an input281

parameter used the value from before any change in natural mortality (0.2) because the282

change in natural mortality is meant to be unknown.283

For catch misspecification, a scalar multiple of the true catch observation is provided as the284

observed catch to the DLMs. The scalar is 0.2 when fishing intensity was always overfishing285

and for both selectivity patterns, 0.44 when the fishing history included a reduction to FMSY286

and with time variant selectivity, or 0.40 when the fishing history included a reduction to287

FMSY and selectivity was time invariant. The shift in scalar trended linearly from 1 to the288

lower value between years 31 and 40 of the base period and remained at the lower value for289

years 41-50. These scalars were applied only to the aggregate catch so that they affect all290

catches at age equally. When catch misspecification was applied in conjunction with a DLM291

during the feedback period, the true catch in the OM equaled the catch advice provided292

by the DLM multiplied by the inverse of the scalar multipliers (i.e., the true catches were293

higher than the DLM catch advice). Thus, when the scalar multipliers were applied to the294

true catch from the OM in order to provide observed catches at the next application of295

the DLM, the observed catch equaled the catch advice from the previous application of the296

DLM, on average. In other words, managers and analysts would be given the perception297
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that the DLM catch advice was being caught by the fishery, when in fact the true catches298

were always higher. This meant that the source of the retrospective pattern continued in the299

feedback period. The magnitude of the retrospective pattern in the feedback period varied300

due to the observation error applied in each realization (See Supplemental Materials Figure301

S4).302

Fourteen methods for setting catches were explored (13 DLMs and the SCAA) and were303

applied to all 16 scenarios, which created 224 factorial combinations in the study design.304

For each element of the full factorial combinations, 1,000 simulations were conducted. The305

simulations used the same random number seeds across all combinations in the study design306

resulting in the same patterns of recruitment deviations and observation errors. Two DLMs307

(AIM and ES-Fstable) had two failed simulations each, which were caused by relatively high308

catch advice (i.e., requiring relatively high F ) that triggered errors in the Newton-Raphson309

iterations used to determine the F that would produce the desired catch. This small number310

of failures was unlikely to effect results and conclusions, and so were not considered further.311

Performance Metrics312

Six metrics thought to be of broad interest were reported here, each calculated and reported313

separately for a short-term (i.e., first six years of the feedback period) and long-term (i.e.,314

last 20 years of the feedback period) period. These metrics were selected to represent the315

tradeoffs in terms of benefits to the fishery and risks to the stock. The specific metrics316

reported were: SSB
SSBMSY

, F
FMSY

, catch relative to MSY , interannual variation in catch (A’mar317

et al. 2010), number of years of overfishing (F > FMSY ), and number of years of the stock318

being overfished (SSB < 0.5SSBMSY ).319

Results320

Overall performance varied widely across methods, and the individual performance of a321

method was sensitive to the different scenarios explored. Performance for each method was322
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sensitive to the source of the retrospective pattern (missing catch or M), the exploitation323

history, when in the feedback period the metric was calculated (short- or long-term), and324

whether or not a 25% buffer was applied when setting the catch advice from a given method.325

Overall, similar results occurred for the scenarios with one or two selectivity blocks, so the326

impact of the selectivity scenarios was not discussed further.327

Aggregate performance328

In Figure 1, the inner quartiles and medians for all performance measures are shown, calcu-329

lated across all scenarios combined. In general, methods that resulted in high mean F/FMSY330

(Figure 1B) resulted in lower stock biomass (Figure 1A), more years of overfishing (Figure331

1E) and of being overfished (Figure 1F), and vice-versa. Higher F values were also associated332

with higher catches (Figure 1C), on average, and a greater variability in catch, but there333

were some methods that produced lower F values that also resulted in high catch variability334

(CC-FM, CC-FSPR; Figure 1D).335

A number of methods performed poorly overall, resulting in high exploitation rates and low336

stock size, on average (Figure 1). These methods include AIM, three of the four expanded337

survey biomass methods (ES-FM, ES-FSPR, and ES-Fstable), and the Skate method. The338

Itarget and ensemble methods also resulted in SSB < SSMMSY and F > FMSY , on average,339

though departures from the MSY levels were not as severe as the other methods (Figure340

1). The remaining methods (CC-FM, CC-FSPR, DynLin, ES-Frecent, Islope, Ismooth, and341

SCAA) were able to limit overfishing and keep biomass above SSBMSY , on average, although342

for four of these methods (CC-FM, CC-FSPR, DynLin, and Ismooth) biomass was more than343

50% higher than SSBMSY (Figure 1). Principal components analysis of the median values for344

all methods and metrics resulted in groupings similar to those noted above (see Supplemental345

Materials Figure S5).346

Scenario-dependent performance347

The source of the retrospective pattern had a large impact on results for a given method.348
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The relationship between SSB/SSBMSY and C/MSY is shown across scenarios for the349

different sources of retrospective error. Stock size and catch (relative to MSY levels) are350

clustered for many of the methods with no overlap between M and unreported catch sources351

(AIM, ES-FM, ES-FSPR, ES-Fstable, Itarget, Skate, Ensemble, and SCAA). For all of352

these methods, SSB/SSBMSY was lower when unreported catch was the source of the353

retrospective pattern, and C/MSY was also lower except for the Itarget and the SCAA354

methods compared to the scenarios when increased natural mortality was the source of the355

retrospective pattern (Figure 2). The source of the retrospective pattern also had a large356

impact on the other performance measures (Figure 3). In general, when unreported catch357

was the source of the retrospective pattern, interannual variability in catch was higher,358

overfishing was more frequent and with a larger F/FMSY , and the stock had a higher risk of359

being overfished compared to the scenarios when increased natural mortality was the source360

of the retrospective pattern (Figure 3). Six methods (AIM, ES-FM, ES-FSPR, ES-Fstable,361

Itarget, Skate, Ensemble) resulted in overfishing in nearly every year of the feedback period362

(often with very high F/FMSY ) when missing catch was the source of the retrospective363

pattern (Figure 3B, 3E). In contrast, all methods except Skate, AIM, and ES-Fstable had364

low F/FMSY , high SSB/SSBMSY , and few years of being overfished when increased natural365

mortality was the source of the retrospective pattern (Figure 3B, 3A, 3F). The C/MSY366

when increased natural mortality was the source of the retrospective pattern varied widely367

with some DLMs well below 1.0 and others well above (Figure 3C). The SCAA method also368

resulted in frequent overfishing in the missing catch scenario, but less so when the stock was369

more depleted at the start of the feedback period (Figure 3F).370

Exploitation history also impacted the performance of many of the other methods. For four371

methods (Islope, Ismooth, DynLin and ES-Frecent), exploitation rates were higher when the372

stock experienced overfishing for the entire base period, but the impact was more dramatic373

in the short-term. Over time as these methods were used, F declined and remained below374

FMSY in the long-term (Figure 4A), allowing stock recovery. The majority of the other375
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methods also resulted in greater exploitation rates in the short-term, though some methods376

kept F/FMSY < 1 regardless of the time-period (CC-FM, CC-FSPR, and SCAA), while377

others (AIM, ES-Fstable, Skate, Ensemble) kept F/FMSY > 1 over the short- and long-term378

(Figure 4A). For the ES-FM and ES-FSPR methods, there was not a consistent pattern in379

exploitation rates when comparing the short- and long-term periods (Figure 4A).380

As expected, application of a buffer to the catch advice resulted in lower exploitation rates381

compared to no buffer across all methods, but the magnitude of the impact differed by382

method (Figure 4B). For poor-performing methods where F/FMSY >> 1, the use of a buffer383

tended to result in greater reductions in F than other methods. Methods like AIM, ES-FM,384

ES-FSPR, ES-Fstable and Skate all had large reductions in F when the buffer was applied,385

but the reduction was insufficient to reduce F/FMSY < 1 (Figure 4B). For some methods386

(CC-FM, CC-FSPR, SCAA), the median F/FMSY was always below 1 with or without387

the buffer, whereas for other methods (DynLin, ES-Frecent, Islope, Ismooth, Itarget, and388

Ensemble) there were instances where using a buffer pushed F/FMSY below 1 (though it389

depended on the exploitation history; Figure 4B).390

The median and interquartile range performance measures reported thus far do not ex-391

press the full range of results across individual runs, however. When all the simulations are392

plotted, there is clearly a wide range of possible outcomes for the population, indicating393

that performance for a particular series of environmental conditions, expressed through re-394

cruitment deviations, can vary widely. For example, Figure 5 shows the long-term average395

SSB/SSBMSY and C/MSY relationship across runs for a single scenario. Different patterns396

in the relationship between the SSB and catch ratios resulted, with methods falling into two397

groups. In the first group, there is a near linear relationship between SSB/SSBMSY and398

C/MSY (AIM, ES-Fstable, ES-FSPR, ES-FM, Itarget, Skate, Ensemble, and SCAA; Figure399

5). In the second group (CC-FSPR, CC-FM, DynLin, ES-Frecent, Ismooth, and Islope) the400

relationship is more diffuse, with a wide range of C/MSY for a given SSB/SSBMSY . The401

linear or diffuse relationships persisted across scenarios, although the upper limit of C/MSY402
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was greatly reduced for the diffuse methods when the buffer was applied to the catch advice.403

(See Supplemental Figures S6-S21 for these plots across all 16 scenarios and Figures S22-S37404

for similar plots showing F/FMSY versus SSB/SSBMSY ).405

Discussion406

A range of data-limited methods for setting catch advice were evaluated for stocks where407

assessment models may be rejected due to strong, positive retrospective patterns. A method408

was considered to perform well if it limited overfishing without resulting in light exploitation409

rates (F << FMSY ), thereby allowing depleted stocks to recover to SSBMSY (or for healthy410

stocks to remain there), and for high and stable catches (close to MSY ).411

Overall, none of the methods evaluated performed best across the scenarios exploring the412

different sources of the retrospective pattern (unreported catch or increasing M) and dif-413

ferent levels of historical fishing intensity. A number of methods did perform well in many414

cases, however, while others performed consistently poorly, resulting in frequent and intense415

overfishing (F >> FMSY ). We performed simulations for a couple of scenarios with no416

source of retrospective patterns and found the expected result that all DLMs and the SCAA417

performed better (SSB, F , and catch were all closer to the MSY reference points) than418

when either source of retrospective patterns was present. Due to the focus of this study, we419

did not examine the no retrospective source in detail and do not comment on it further.420

Currently, in the Northeast U.S., if an assessment model is rejected due to a large rho421

value in SSB, the catch advice from that model is ignored and some data-limited approach422

is used. However, the rho-adjusted SCAA model performed better than a number of the423

alternatives explored here. Therefore, there should not necessarily be an expectation that424

a data-limited method will perform better than the rejected assessment model. The SCAA425

only resulted in high exploitation rates (F >> FMSY ) when unreported catch was the source426

of the retrospective pattern and for the scenario where F = FMSY at the end of the base427
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period that left the stock in relatively good condition (SSB ∼ SSBMSY ). In contrast, this428

method was particularly effective when the stock was depleted and there was unreported429

catch. When M was the source of the retrospective pattern, the rho-adjusted SCAA method430

typically resulted in light exploitation rates, on average. The light exploitation rates in these431

cases were likely driven by the combination of using a rho-adjustment, but also using the432

lower M from the beginning of the base period rather than the higher M that occurred433

during the feedback period. Using an M value that is too low in a stock assessment will434

typically bias estimates of biomass and reference points too low, resulting in catch advice435

that is below target levels (Johnson et al. 2014; Punt et al. 2021). The consequences of436

using a value for M that is too low versus too high is also asymmetrical (Johnson et al.437

2014), with negative consequences being more severe when M is assumed too high than low,438

and the results here are consistent with these previous conclusions.439

The methods that adjusted recent average catches based on trends in the survey (Ismooth440

and Islope) performed well overall in terms of catch, stock status, and variation in catch. The441

method using the expanded survey biomass with the recent exploitation rate (ES-Frecent)442

also performed well and similarly to Ismooth. The performance of these methods was also443

generally robust among scenarios, with the exception of when there were unreported catches444

and the stock was depleted (see below). The generally positive performance of these meth-445

ods was consistent with Hilborn et al. (2002) and Cox and Kronlund (2008), both of which446

evaluated a variant of a “hold-steady” DLM. In the case of Hilborn et al. (2002), the “hold-447

steady” DLM policy was designed to adjust catches in order to keep rockfish (Sebastes spp.)448

populations at recently observed index levels, and did so by functioning as a constant es-449

capement harvest control rule where target catches were set to zero below some pre-specified450

index level. In the variant used by Cox and Kronlund (2008), catches were adjusted to main-451

tain a sablefish (Anoplopoma fimbria) population at a pre-specified index level thought to be452

sustainable and desirable in terms of meeting fishery objectives (e.g., high catch), but never453

permitted target catches of zero and so functioned as a constant exploitation rate control454
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rule. The “hold-steady” DLM of Cox and Kronlund (2008) performed similarly in terms of455

catch, stock depletion, and variation in catch, as a constant exploitation rate policy where456

target catch was specified as the product of desired exploitation rate and an estimate of457

biomass from a SCAA model. This result was robust to uncertainty in initial stock status458

and steepness (Cox and Kronlund 2008). The SCAA model was always correctly specified459

(i.e., expected to produce unbiased estimates on average), however, and no comparison to460

the results of this research in the presence of retrospective patterns is possible (Cox and461

Kronlund 2008). The “hold-steady” policy of Hilborn et al. (2002) performed similarly to462

or better in terms of catch and stock status than other harvest control rules that relied463

on assessment estimates of biomass (i.e., 40:10 and constant F). The performance of the464

“hold-steady” DLM was also more robust to uncertainty in steepness and to the presence465

of unreported catch (Hilborn et al. 2002). The performance of the two harvest policies466

that relied on assessment estimates of biomass (i.e., constant exploitation rate and a “40:10”467

biomass-based policy) also degraded when the estimates of biomass were biased, which is468

an issue that does not effect the “hold-steady” DLM (Hilborn et al. 2002). The bias in469

the assessment estimates considered in Hilborn et al. (2002) were not necessarily induced470

by a retrospective pattern, however, and no consideration of making a rho-adjustment was471

possible in that study.472

The Ismooth method is currently used to set catches for Georges Bank cod (NEFSC 2019)473

and red hake (Urophycis chuss; NEFSC (2020)). Variations of the ES-Frecent have been used474

for witch flounder and Georges Bank yellowtail flounder. While the findings here generally475

support the continued use of the Ismooth and ES-Frecent methods, they may not be well476

suited for depleted stocks where unreported catches are believed to be an issue. The Ismooth,477

Islope, and ES-Frecent DLMs produced high Fs and limited stock recovery with unreported478

catches and when the stock was depleted. While Hilborn et al. (2002) and Cox and Kronlund479

(2008) did not reach the same conclusion about the “hold-steady” DLM, those studies did480

not consider initial levels of depletion as low as in this study. These results highlight the481
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importance of accurate catch reporting, as unreported catch can create a negative feedback482

loop with perpetually high Fs being produced by a management system that seemingly483

should result in sustainable catch advice.484

Three methods were consistently risk-averse across scenarios, limiting the frequency and485

magnitude of overfishing and resulting in high stock biomass. These methods were the486

two catch curve options (CC-FM and CC-FSPR) and DynLin. The catch curve methods487

produced a wider range of average catches across scenarios, and also had greater interannual488

variability in catches compared to DynLin. While the lower exploitation rates from these489

approaches may be undesirable due to forgone yield, there may be circumstances where490

they are preferred. For example, for stocks that are believed to be heavily depleted, low491

exploitation rates would allow for a more rapid recovery.492

A number of methods performed poorly, particularly when catches were unreported. These493

methods include three of the expanded survey biomass approaches (ES-Fstable, ES-FM, ES-494

FSPR), AIM, and Skate. The AIM model has been widely used across stocks in the region495

(NEFSC 2002, 2005, 2008), although there is a decreasing trend in its use across model496

resistant stocks (NEFSC 2019). The findings here suggest that alternative approaches should497

be considered in cases where AIM is still used and there is concern over unreported catches.498

The Skate method is used to manage the skate complex in the Northeast U.S. (a group of499

seven co-managed species). Interestingly, six of the seven species are considered in good500

condition with high survey biomass indices in recent years (NEFMC 2020). That the Skate501

method performed poorly in our analysis but performs well for the skate complex illustrates502

how the performance of methods in this analysis may be sensitive to the scenarios and species503

life history considered. As may be the case for the Skate method, the performance of some504

methods may depend on the condition of the stock when the method is first applied, and less505

so on life-history. Therefore, care is needed when trying to generalize these results across506

stocks that may have different life histories, exploitation histories, and without unreported507

catches or increases in M .508
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In addition to the analytical differences among the thirteen DLMs, most of the DLMs and509

control rules had multiple options that could be adjusted to make them more or less risk510

averse. DynLin had a large number of user defined decision points. Given the large range of511

options already explored in the study, one suite of options was selected for each DLM-control512

rule and kept constant for all simulations. Further studies could explore the different options513

within an individual DLM to understand how they might affect performance.514

Many other data-limited methods exist for setting catch advice that were not included in515

this evaluation, and they vary widely in complexity, data inputs, and assumptions required516

(e.g., Carruthers and Hordyk 2018). Length based methods were not evaluated to keep the517

overall number of methods tractable, and due to the availability of age based information518

in the region. Methods that require only catch data or snap shots of survey data were not519

considered due to the availability of the relatively long and contiguous Northeast Fisheries520

Science Center’s spring and fall, coastwide bottom trawl surveys, and the fact that “catch521

only” methods have been shown to perform poorly (e.g., Carruthers et al. 2014). Complete522

catch histories are not available for stocks in the region (i.e., from the inception of fishing).523

Consequently, methods that required complete catch histories or required assumptions about524

relative depletion (e.g., DCAC in MacCall 2009; DB-SRA in Dick and MacCall 2011) were525

also omitted from consideration. The need for short run-times and the desire for methods526

that could be reviewed quickly prevented the use of modern state-space production models527

such as SPiCT (Pedersen and Berg 2017) and JABBA (Winker et al. 2018).528

The SCAA was confronted with inconsistent data in this study, while the DLMs typically529

used only a single source of data and thus did not encounter inconsistencies. A recent ex-530

amination of the data used in assessments in this region similarly found inconsistencies in531

data streams even before modeling. Wiedenmann and Legault (2022) found a negative rela-532

tionship between relative F (catch/survey) and survey Z for stocks with strong retrospective533

patterns but the expected positive relationship for stocks without a retrospective pattern. It534

is exactly this sort of tension that creates retrospective patterns in integrated models, but535
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is not found in DLMs that only use one type of data.536

Despite conducting hundreds of thousands of simulations, there are still limitations to our537

study. We only examined one life history representative of groundfish in the region. We538

acknowledge that best practice is to select a DLM for a specific life history and fishery539

condition (e.g., Fischer et al. 2020). As is typically the case with large simulation studies,540

we were not able to tune any of the DLMs or the SCAA in any given realization, which would541

occur in practice for an actual stock assessment. We also examined only scenarios that started542

with Mohn’s rho values near 0.5 for spawning stock biomass. This is a strong retrospective543

pattern, but some stocks in the region have even stronger retrospectives. Performance of544

the DLMs and SCAA would be expected to degrade with stronger retrospectives, but by545

how much is still an open area for research. Similarly, sources of retrospective patterns546

that create different relationships between the true values and estimated values should also547

be explored (see Deroba 2014). To make the results interpretable, we only examined a548

single source for the retrospective pattern at a time. In reality, there may be more than549

one factor leading to an observed retrospective pattern. How the multiple sources would550

interact to influence performance is another topic for future research. Development of harvest551

control rules specifically for situations where retrospective patterns are found in age-based552

assessments would also be beneficial. The large number of scenarios examined and the large553

number of realizations gives us confidence that our results are meaningful in general, but554

that the performance of any of the DLMs may differ in actual practice.555

An interesting finding of this study is the linear versus diffuse patterns between SSB and556

catch across methods. These patterns have implications for the trade-offs among methods,557

with linear relationships resulting in more consistent exploitation rates across stock sizes.558

Therefore, these methods have higher certainty of a given catch at a given stock size. How-559

ever, they also tended to result in lower stock sizes, on average, across methods. The more560

diffuse relationships resulted in more variable exploitation rates across stock sizes, with some561

situations where the population biomass was quite high but the catch was low (relative to562
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MSY), resulting in a very low F . The reasons behind these different patterns remain unclear,563

and future work to explore these patterns is warranted.564

One of the reasons for the difference in performance between the catch and natural mortality565

retrospective sources was how the reference points were calculated. In all cases, the initial566

conditions, including the natural mortality rate, were used to compute the reference points.567

This decision was made based on the fact that the increase in natural mortality was assumed568

to be unknown in the simulations. If the increase in natural mortality was known, the age-569

structured assessments would have accounted for it, different reference points might have570

been computed (Legault and Palmer 2016) and there may not have been a retrospective571

pattern at all (Legault 2020), and no need to consider alternative DLMs. The reference572

points for the increased M scenarios would have been different if they were computed using573

the values from the final year of the base period, but the overall conclusions regarding the574

different DLMs would not change as this just results in a rescaling of the axis. These results575

are not shown to reduce confusion regarding the simulations.576

Closed-loop simulation is a common tool for examining performance of catch advice from577

various stock assessment approaches in a feedback setting. It is often used as part of a578

full management strategy evaluation when working with stakeholders to develop manage-579

ment regulations that make trade offs between near term and long term catches, risk to the580

fish population, and mixed-fleet allocations (Carruthers et al. 2016; Goethel et al. 2019a;581

Harlyan et al. 2019). We did not conduct a full management strategy evaluation with582

stakeholder input (Goethel et al. 2019b), but see that as a fruitful next step that could583

build on the conclusions from our closed-loop work. Using a generic groundfish life-history584

and monitoring standard performance metrics related to stock status and catch stability, we585

were able to cull the herd of potential DLMs and we would not carry the consistent poor586

performers forward for further study. The wide range of expertise reflected in the authorship587

was by design so that the simulation specifications and performance metrics were broadly588

useful. Before undertaking a full management strategy evaluation and engaging regional589
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stakeholders, we would want to select a specific stock and jointly identify specific manage-590

ment regulations to be tested (Deroba et al. 2019). Results of this work have been presented591

to both local fishery management councils, with generally positive feedback about the utility592

of the conclusions for identifying appropriate model approaches when an SCAA is rejected.593

Our work was similar to all other closed-loop simulations in that it was designed to address594

a specific situation, including much recent work comparing the performance of data-limited595

and data rich assessment approaches (e.g., Fulton et al. 2016; Sagarese et al. 2019; Bouch596

et al. 2020; Li et al. 2022).597

This study is a first attempt to identify suitable methods for setting catch advice when stock598

assessment models are rejected due to large, positive retrospective patterns. Although no599

single method performed best across scenarios, a number of generally suitable and unsuitable600

methods were identified under specific conditions. The results of this work can help scientists601

and managers select a subset of possible options for consideration to set catch advice when602

assessment models are rejected. The approach developed here can, and should be expanded603

to consider other cases not explored here, as performance of individual methods are very604

likely case-dependent.605
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Tables853

Table 1. Maturity-, weight-, and selectivity-at-age of the simulated fish population.854

Age Maturity Weight (kg)

Fishery

Selectivity

(before change if

applicable)

Fishery

Selectivity (after

change if

applicable)

1 0.04 0.15 0.07 0.02

2 0.25 0.5 0.17 0.05

3 0.60 0.9 0.36 0.12

4 0.77 1.4 0.61 0.27

5 0.85 2.0 0.81 0.50

6 0.92 2.6 0.92 0.74

7 1.00 3.2 0.97 0.89

8 1.00 4.1 0.99 0.96

9 1.00 5.9 1.00 0.99

10+ 1.00 9.0 1.00 1.00
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Table 2. Naming convention and details of the data-limited methods evaluated.855

Method Details

Ismooth Ctarg,y+1:y+2 = C3,y(eλ) where C3,y is the most recent

three year average; C3,y = 1
3

∑t=3
t=1 Cy−t and λ is the slope

of a log linear regression of a LOESS-smoothed average

index of abundance (spring and fall) with span = 0.3:

Îy = loess(Îy) and LN(Îy) = b + λy

Islope Ctarg,y+1:y+2 = 0.8C5,y(1 + 0.4eλ) where C5,y is the most

recent five-year average catch through year y − 1:

C5,y = 1
5

∑t=5
t=1 Cy−t and λ is the slope of a log-linear

regression of the most recent five years of the averaged

index.

Itarget Ctarg,y+1:y+2 =
[
0.5Cref

(
I5,y−Ithresh

Itarget−Ithresh

)]
I5,y ≥ Ithresh

Ctarg,y+1:y+2 =
[
0.5Cref

(
I5,y

Ithresh

)2
]

I5,y < Ithresh; Cref is

the average catch over the reference period (years 26

through 50): Cref = 1
25

∑y=50
y=26 Cy; Itarget is 1.5 times the

average index over the reference period:

Itarget = 1
25

∑y=50
y=26 Iy; Ithresh = 0.8 Itarget, and is the most

recent five year average of the combined spring and fall

index: I5,y = 1
5

∑t=5
t=1 Iy−t+1

Skate Ctarg,y+1:y+2 = FrelI3,y where Frel = median
(

C3,Y
I3,Y

)
is

the median relative fishing mortality rate calculated

using a 3 year moving average of the catch and average

survey index across all available years (Y):

C3,y = 1
3

∑t=3
t=1 Cy−t and I3,y = 1

3
∑t=3

t=1 Iy−t+1
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Method Details

An Index Method (AIM) AIM first calculates the annual relative F :

Frel,y = Cy
1
3

∑t=3
t=1 Iy−t+1

and the annual replacement ratio:

Ψy = Iy
1
5

∑t=5
t=1 Iy−t

. These values are used in a regression:

LN(Ψy) = b + λLN(Frel,y) to determine Frel,∗, which is

the value of Frel,y where the predicted Ψ = 1 or

LN(Ψ) = 0. Frel,∗ is called either the “stable” or

“replacement” F , and is used to calculate the target

catch: Ctarg,y+1:y+2 = IyFrel,∗.

Dynamic Linear Model

(DynLin)

Langan (2021).

Expanded survey biomass

method 1 F40% (ES-FSPR)

Ctarg,y+1:y+2 = BĪ,yµtarg where BĪ is the average of

estimated fully-selected biomass from each survey:

BĪ,y = 1
2

(
Ispr,y

qspr
+ Ifall,y−1

qfall

)
and target exploitation

fraction, µtarg is calculated as:

µtarg = Ftarg

Ztarg

(
1 − e−Ztarg

)
; Ftarg = F40% and

Ztarg = Ftarg + M

Expanded survey biomass

method 2 F = AIM

replacement (ES-Fstable)

Same as the above expanded survey method, but with

µtarg equal to the stable exploitation fraction Frel,∗

calculated using the AIM approach (see above).

Expanded survey biomass

method 3 F = M (ES-FM)

Same as the above expanded survey methods, but with

the target exploitation rate set to the assumed M :

Ftarg = M .
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Method Details

Expanded survey biomass

method 4 F = recent average

(ES-Frecent)

Same as the above expanded survey methods, but with

the target exploitation fraction set to the most recent

three year average exploitation fraction: µtarg =
∑y

y−2 µy

3

µy = Cy−1
BĪ,y

Catch curve Method 1 F40%

(CC-FSPR)

Ctarg,y+1:y+2 = Ftarg

Zavg,y
Bcc,y

(
1 − e−Zavg,y

)
where Bcc is the

estimated biomass: Bcc,y = Cy−1
Favg,y
Zavg,y

(1−e−Zavg,y) with

Zavg,y = Zspring,y+Zfall,y−1
2 ; Favg,y−1 = Zavg,y−1 − M and,

Ftarg = F40%. Survey catch at age used in catch curve to

estimate Z.

Catch curve Method 2 M

(CC-FM)

Same as catch curve method 1 above, but with

Ftarg = M .

Ensemble Median of catch advice provided by AIM, CC-FSPR,

ES-Frecent, ES-FSPR, Islope, Itarget, Ismooth, and

Skate methods.
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Table 3. Summary of the scenarios evaluated within the study design.856

Factors Variants

retrospective source catch or natural mortality

fishing history FMSY in second half of base period or

overfishing throughout base period

(2.5xFMSY )

fishery selectivity blocks constant selectivity or selectivity changes in

second half of base period

catch advice multiplier applied as is from DLM (1) or reduced from

DLM (0.75)
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List of Figures857

Figure 1. Inner quartiles and medians for all performance measures across all scenarios and858

runs for each method. Vertical lines are shown at a value of 1 for the performance measures859

that are relative to the MSY reference points (A,B,C).860

Figure 2. Relationship between long-term average spawning biomass and average catch861

(relative to MSY levels) for each method. Each point represents the median for a given862

scenario, separated by the source of the retrospective pattern (catch or M).863

Figure 3. Median performance measures for each method, separated by the source of the864

retrospective error (catch = black, M = gray) and the exploitation history in the base865

period (always overfishing at 2.5xFMSY (circle), or F reduced to FMSY during base period866

(triangle)). Vertical lines are shown at a value of 1 for the performance measures that are867

relative to the MSY reference points (A,B,C).868

Figure 4. Median F/FMSY for each method, with results separated by the exploitation869

history in the base period (always overfishing at 2.5xFMSY (circle), or F reduced to FMSY870

during base period (triangle)) showing A) short- (gray) versus long-term (black) values, and871

B) with (black) or without (gray) a buffer applied when setting the catch (catch multiplier872

= 0.75 or 1).873

Figure 5. Relationship between long-term average catch and spawning stock biomass relative874

to their reference points by method. Each point represents the average for years 21-40 in875

the feedback period for a single iteration of a scenario. The scenario shown is where catch876

was the source of the retrospective pattern with F reduced to FMSY in the second half of877

the base period, there was a single selectivity block, and where no buffer was applied to the878

catch advice (catch multiplier = 1).879

39



SCAA
Ensemble

Skate
Itarget

Ismooth
Islope

ES−Fstable
ES−FSPR

ES−Frecent
ES−FM
DynLin

CC−FSPR
CC−FM

AIM

0 1 2 3
SSB / SSBMSY

A

SCAA
Ensemble

Skate
Itarget

Ismooth
Islope

ES−Fstable
ES−FSPR

ES−Frecent
ES−FM
DynLin

CC−FSPR
CC−FM

AIM

0.0 2.5 5.0 7.5
F / FMSY

B

SCAA
Ensemble

Skate
Itarget

Ismooth
Islope

ES−Fstable
ES−FSPR

ES−Frecent
ES−FM
DynLin

CC−FSPR
CC−FM

AIM

0.0 0.5 1.0 1.5 2.0
C / MSY

C

SCAA
Ensemble

Skate
Itarget

Ismooth
Islope

ES−Fstable
ES−FSPR

ES−Frecent
ES−FM
DynLin

CC−FSPR
CC−FM

AIM

0.00 0.25 0.50 0.75 1.00
Relative variability in catch (IAV)

D

SCAA
Ensemble

Skate
Itarget

Ismooth
Islope

ES−Fstable
ES−FSPR

ES−Frecent
ES−FM
DynLin

CC−FSPR
CC−FM

AIM

0 5 10 15 20 25
Number of years overfishing

E

SCAA
Ensemble

Skate
Itarget

Ismooth
Islope

ES−Fstable
ES−FSPR

ES−Frecent
ES−FM
DynLin

CC−FSPR
CC−FM

AIM

0 5 10 15 20 25
Number of years overfished

F

Figure 1: Inner quartiles and medians for all performance measures across all scenarios and
runs for each method. Vertical lines are shown at a value of 1 for the performance measures
that are relative to the MSY reference points (A,B,C).
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Figure 2: Relationship between long-term average spawning biomass and average catch
(relative to MSY levels) for each method. Each point represents the median for a given
scenario, separated by the source of the retrospective pattern (catch or M).
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Figure 3: Median performance measures for each method, separated by the source of the
retrospective error (catch = black, M = gray) and the exploitation history in the base
period (always overfishing at 2.5xFMSY (circle), or F reduced to FMSY during base period
(triangle)). Vertical lines are shown at a value of 1 for the performance measures that are
relative to the MSY reference points (A,B,C).
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Figure 4: Median F/FMSY for each method, with results separated by the exploitation
history in the base period (always overfishing at 2.5xFMSY (circle), or F reduced to FMSY

during base period (triangle)) showing A) short- (gray) versus long-term (black) values, and
B) with (black) or without (gray) a buffer applied when setting the catch (catch multiplier
= 0.75 or 1).
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Figure 5: Relationship between long-term average catch and spawning stock biomass relative
to their reference points by method. Each point represents the average for years 21-40 in
the feedback period for a single iteration of a scenario. The scenario shown is where catch
was the source of the retrospective pattern with F reduced to FMSY in the second half of
the base period, there was a single selectivity block, and where no buffer was applied to the
catch advice (catch multiplier = 1).

44


	Data Rich but Model Resistant: An Evaluation of Data-Limited Methods to Manage Fisheries with Failed Age-based Stock Assessments
	Abstract
	Keywords
	Introduction
	Methods
	Results
	Discussion
	Acknowledgements
	Data and Code Availability
	References
	Tables
	List of Figures




