UPDATED DISCARD MORTALITY WORK

Sally A. Roman and David B. Rudders Virginia Institute of Marine Science

Sea Scallop Benchmark Assessment
Working Group Meeting
March 26-30, 2018
Woods Hole, MA

Updates

- Summary of data for comparison to commercial effort
- Used multinomial proportional odds model to understand what variables impact shell damage (Benoît et al., 2010; Capizzano et al., 2016, Knotek et al., 2017)
- Survival Analysis
 - Length cut off increased to 90 mm
 - Used air temperature as explanatory variable instead of thermal gradient
 - Used survival mixture model and GAM

Data Summary

Variable	Mean	SE	Range
Tow Duration (minutes)	54.2	0.44	4 - 99
Scallop Catch (number of baskets)	12.99	0.37	0 - 133
Thermal Gradient (°C)	8.48	0.16	-6.4 - 21.1
Air Temperature	18.2	0.12	7.7 - 28.3
Depth (m)	62.54	0.17	36.6 - 89.6
Shell Height (cm)	8.83	0.06	0.8 - 19.6
Exposure Time (minutes)	22.05	0.29	1 - 93.02

Data Summary

Proportional Odds Model

- Variables considered: Tow duration, shell height, scallop catch and bottom type
- Final model indicated all four variables significantly effected shell damage

Variable	Coefficient	Odds Ratio
Shell Height	0.391	1.48
Bottom_Typesoft	-0.065	0.94
Tow_Duration	-0.003	1.00
Bushels_Scallops	0.008	1.01

Interpretation:

- The odds of increased shell damage is 1.48 times greater for every unit increase in shell height
- The odds of increasing shell damage decrease on soft bottom by 0.94

- GAM with cox proportional hazards family
- Variables: Air temperature, shell height, scallop catch, shell damage, bottom type, exposure time and interaction of air temperature and shell height
- Forward selection, optimal model based on AIC and deviance explained
- Final model:

Shell damage, interaction term, shell height, air temperature and exposure time Deviance explained: 29.5%

All variables were significant

Same model without shell damage explained 7.61 of the deviance

Partial effect plots for optimal model

Predicted survival:

Mean shell height by shell damage code, mean air temperature (18.13) and mean exposure time (22.05 mins)

Predicted survival:

Mean shell height by shell damage code, min air temperature (7.7)

and min exposure time (1 min)

Predicted survival:

Mean shell height by shell damage code, min air temperature (28.3) and min exposure time (93 min)

Survival Analysis - Mixture Model

- Scallop length bin cut off 9 cm
- Variables: Air temperature, shell height, shell damage, bottom type, exposure time and interaction of air temperature and shell height
- Forward selection, optimal model based on AIC
- Final model:

Shell damage, shell height and exposure time on alpha and phi

Air temperature on phi

Model fit was poor

