Framework 59:
 Acceptable Biological Catches for American Plaice, Georges Bank Haddock, Gulf of Maine Haddock and Pollock

Jamie Cournane, PhD, PDT Chair \& Paul Nitschke, NEFSC

SSC Meeting
January IO, 2020

Overview: PDT memo to SSC

- Highlights the PDT's discussion of risk biological, economic, and social
- Includes two supporting analysis:

1. An overview of the SSC's use of constant ABCs and
2. Economic impacts analysis using the Quota-Change model (QCM) which is run for the sector program (sectors) in the commercial groundfish fishery.

- Refers to previous PDT memo to the SSC, dated October 10, 2019 (as revised on 10/15/19) for additional information, including projections at 75% FMSY

Comparing constant quota and 75\%FMSY quota approaches

- Biological
- Based on the 2019 assessments, GB haddock, GOM haddock, American plaice, and pollock are rebuilt, not overfished, and overfishing is not occurring.
- Risk of overfishing appears to be low based on the 2019 stock assessment and projections.
- Projections may be performing better for 3 of the 4 stocks based on the Wiedenmann and Jensen analysis.
- Some caveats discussed with respect to uncertainty by stock.
- Economic
- Economic impacts analysis using the QCM for sectors suggest no difference in predicted utilization between the two sets of quotas, driven largely by other limiting stocks in the multispecies fishery.
- Some caveats discussed with respect to American plaice.
- Social
- There may be some distributional impacts if quotas increase or decrease, depending on the extent that any given port or fishing community depends on the stocks in question and if the assumptions of the QCM are not fully met.
- Trust among fishery participants is already low, so this would be a possible opportunity to increase trust among fishery stakeholders by ensuring that the appropriate steps are followed as outlined by the Council's own current $A B C$ control rule for groundfish. Alternatively, in the past, industry has requested stability in quotas - which a constant quota approach could provide.

Overview of Presentation

- Biological - background on constant quotas, projection performance, and individual stock assessments with projected quotas
- Economic - summary of QCM results
- Social - summary of analysis

Overview of Presentation

- Biological - background on constant quotas, projection performance, and individual stock assessments with projected quotas
- Economic - summary of QCM results
- Social - summary of analysis

Long Term Performance of Projections

Past experience has shown that the projections used to set future catch limits and plan rebuilding strategies do not perform well (i.e., projected catch does not result in the desired fishing mortality, and stock growth does not occur as expected). In 2011, the SSC asked the PDT to examine an alternative to using updated assessments for setting FY2012 - FY2014 ABCs. Simulation analyses showed that projections tend to be biased high - that is, they over-estimated stock growth and future catches (Brooks and Legault 2016 and Wiedenmann and Jensen 2017). This work led to the SSC's implementation of constant ABCs for several groundfish stocks.

Acceptable Biological Catch (ABC) US+Canada											
stock	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
GB cod	4,812	5,616	5,616	2,506	2,506	2,506	1,249	1,249	2285	2285	2285
GOM cod	8,530	9,012	6,700	1,550	1,550	386	500	500	703	703	703
GB Haddock	62,515	46,784	39,846	35,783	35,699	43,606	77,898	77,898	73,114	73,114	73,114
GOM Haddock	1,265	1,206	1,013	290	677	1,454	3,630	4,534	13,131	12,490	10,186
GB Yellowtail Flounder	1,500	2,650	1150	500	400	354	354	300	300	140	140
SNE Yellowtail Flounder	493	687	1,003	700	700	700	267	267	68	68	68
CC/GOM Yellowtail Flounder	863	1,041	1,159	548	548	548	427	427	511	511	511
Plaice	3,156	3,444	3,632	1,557	1,515	1,544	1,297	1,336	1,732	1,609	1,492
Witch Flounder	944	1,369	1,639	783	783	783	460	878	993	993	993
GB Winter Flounder	2,052	2,224	3,753	3,750	3,598	2,124	755	755	855	855	855
GOM Winter Flounder	238	1,078	1,078	1,078	1,078	510	810	810	447	447	447
SNE/MA Winter Flounder	644	897	626	1,676	1,676	1,676	780	780	727	727	727
Redfish	7,586	8,356	9,224	10,995	11,465	11,974	10,338	11,050	11,552	11,785	11,942
White Hake	2,832	3,295	3,638	4,177	4,642	4,713	3,816	3,686	2,971	2,971	2,971
Pollock	19,800	16,900	15,400	15,600	16,000	16,600	21,312	21,312	40,172	40,172	40,172
Northern Windowpane Flounder	169	169	173	151	151	151	182	182	92	92	92
Southern Windowpane Flounder	237	237	386	548	548	548	623	623	473	473	473
Ocean Pout	271	271	256	235	235	235	165	165	127	127	127
Halibut	71	78	85	99	109	119	158	158	137	137	137
Wolffish	83	83	83	70	70	70	82	82	90	90	90

Constant ABCs based on the lowest catch from the $75 \% \mathrm{~F}_{\text {MSY }}$ projections

- In October 2019 the SSC decided to set constant ABCs for all stock assessments that have major retrospective errors regards of the stock status.
- Uncertainty buffers will be greatest in the first year and decrease in the out years when using the constant ABC approach for stocks with the lowest catch in the third year (i.e., 2022).

Projections with decreasing SSB

There are two possible reasons why a projection will decline assuming fishing mortality $\leq \mathrm{F}_{\text {MSY }}$ in the projections.

1. The biomass is greater than $\mathrm{B}_{\mathrm{MSY}}$. Here the projections are fishing the stock down to the target biomass reference point. In this case we are usually increasing the fishing mortality rate in the projection relative to the terminal year in the stock assessment.
2. Year class effects in the pipeline aging through the projections. Usually caused by a large year class aging through the projection. These effects are more dramatic when a dome shaped selectivity exists since the fish are also aging into the cryptic biomass. Poor year class moving through the projections could also result in a declining projection in the short term. Year class effects can become complicated because the end result is from the combined effect from several years through time.

Mortality/Catch Ratios

American Plaice

MODEL	VPA (Level 2)
STOCK STATUS	Not Overfished \& Overfishing is not occurring
REBUILDING	Rebuilt (end date 2024)
RETROSPECTIVE ADJUSTMENT	Yes
UNCERTAINTIES	Evidence of growth differences between fish on Georges Bank and Gulf of Maine.
REVIEWER COMMENTS And Changes	The retrospective pattern remains a source of uncertainty. MDMF survey was excluded from the 2org assessment due to concerns that the declining trends may reflect a movement of the stock offshore instead of decline in the population itself. Exclusion of the MA DMF survey resulted in higher biomass estimates that are more consistent with those from the area-swept survey estimates.

American Plaice

	2017	2019
$F_{M S Y}$ proxy	0.216	0.258
$S S B_{M S Y}(\mathrm{mt})$	13,503	$15,293(11,706-20,432)$
MSY (mt)	2,942	$3,301(2,531-4,386)$
Median recruits (age 1) (000s)	21,969	22,414
Overfishing	No	No
Overfished	No	No

$$
\mathrm{SSB} / \mathrm{SSB}_{\mathrm{MSY}}=1.16 \text { and } \mathrm{F} / \mathrm{F}_{\mathrm{MSY}}=0.09
$$

American Plaice

American Plaice

American Plaice

Age	stock wt	selectivity	maturity
1	0.008	0.003	0.034
2	0.030	0.066	0.132
3	0.108	0.117	0.412
4	0.266	0.444	0.762
5	0.417	0.689	0.932
6	0.517	0.824	0.978
7	0.588	1.000	0.996
8	0.651	1.000	0.998
9	0.712	1.000	1.000
10	0.760	1.000	1.000
$11+$	0.872	1.000	1.000

	Total Stock Biomass				
	Age	2019	2020	2021	2022
	1	150	173	173	173
2	608	476	548	548	
	3	224	1,773	1,376	1,586
4	2,023	448	3,503	2,709	
5	1,329	2,522	533	4,156	
6	7,886	1,288	2,265	476	
7	3,149	6,944	1,039	1,815	
8	1,705	2,673	5,311	783	
9	1,202	1,431	2,005	3,953	
10	790	981	1,052	1,451	
$11+$	2,425	2,559	2,552	2,570	

Age	2019	2020	2021	2022
1	0.01	0.01	0.01	0.01
2	0.03	0.02	0.03	0.03
3	0.01	0.08	0.07	0.08
4	0.09	0.02	0.17	0.13
5	0.06	0.12	0.03	0.21
6	0.37	0.06	0.11	0.02
7	0.15	0.33	0.05	0.09
8	0.08	0.13	0.26	0.04
9	0.06	0.07	0.10	0.20
10	0.04	0.05	0.05	0.07
$11+$	0.11	0.12	0.13	0.13

	Exploitable Biomass			
Age	2019	2020	2021	2022
1	0	0	0	0
2	40	31	36	36
3	26	208	161	186
4	897	199	1,554	1,202
5	916	1,739	367	2,865
6	6,496	1,061	1,866	392
7	3,149	6,944	1,039	1,815
8	1,705	2,673	5,311	783
9	1,202	1,431	2,005	3,953
10	790	981	1,052	1,451
$11+$	2,425	2,559	2,552	2,570
total	17,647	17,827	15,945	15,253

	Proportions (Exploitable Biomass)			
Age	2019	2020	2021	
1	0.00	0.00	0.00	
1	0.00			
2	0.00	0.00	0.00	
3	0.00	0.01	0.01	
4	0.05	0.01	0.10	
5	0.05	0.10	0.01	
6	0.37	0.06	0.12	
7	0.18	0.39	0.07	
8	0.10	0.15	0.33	
9	0.07	0.08	0.19	
10	0.04	0.06	0.13	
$11+$	0.14	0.14	0.16	

American Plaice

Stock Biomass

Exploitable Biomass
$\left.\begin{array}{ll}0 \\ 1 \\ 2\end{array}\right]$

American Plaice

American Plaice

American Plaice

American Plaice

American Plaice

American Plaice

Year	Catch	Historical OFLs	Historical ABCs	Catch Assumption	$\mathrm{F}_{\text {MSY }}$	75
2010	1,795	4,110	3,156			
2011	1,569	4,483	3,444			
2012	1,747	4,727	3,632			
2013	1,449	2,035	1,557			
2014	1,328	1,981	1,515			
2015	1,316	2,021	1,544			
2016	1,108	1,695	1,297			
2017	1,226	1,748	1,336			
2018	1,192	2,260	1,732			
2019		2,099	1,609	1,131		
2020		1,945	1,492		4,084	3,155
2021					3,547	2,881
2022					3,367	2,825

American Plaice

$75 \% \mathrm{~F}_{\mathrm{MSY}}$ Projection

year	OFL	ABC	F	SSB
2020	4,084	3,155	0.19	18,020
2021	3,740	2,881	0.19	16,875
2022	3,687	2,825	0.19	16,911

$75 \% \mathrm{~F}_{\text {MSY }}$ Last Year Constant Projection

year	OFL	ABC	F	SSB
2020	4,084	2,825	0.17	18,101
2021	3,806	2,825	0.19	17,202
2022	3,753	2,825	0.19	17,267

2,825 mt constant ABC was chosen by the SSC in October $\left(\mathrm{MSY}=3,301 \mathrm{mt}, 75 \% \mathrm{~F}_{\mathrm{MSY}}=3,000 \mathrm{mt}\right)$

Georges Bank Haddock

MODEL	VPA (Level 2)
STOCK STATUS	Not Overfished \& Overfishing is not occurring
REBUILDING	Rebuilt
RETROSPECTIVE ADJUSTMENT	Yes
UNCERTAINTIES	Retrospective bias, uncertainty with 2013 year class estimate, slower growth with large year classes and selectivity implications
REVIEWER	The largest sources of uncertainty for this stock include the retrospective bias and assumptions in the projections about weights and selectivity at age. Short term projections make adjustments for year class effects. Stock structure assessment implications for the TRAC stock subset assessment verses the whole bank assessment.

Georges Bank Haddock

	2017	2019
$F_{M S Y}$ proxy	0.35	0.33
$S S B_{M S Y}$ (mt)	104,312	$138,924(67,347-511,852)$
MSY (mt)	24,400	$30,489(14,894-111,258)$
Median recruits (age 1) (000s)	52,249	$59,143(2,780-394,017)$
Overfishing	No	No
Overfished	No	No

$$
\mathrm{SSB} / \mathrm{SSB}_{\mathrm{MSY}}=3.65 \text { and } \mathrm{F} / \mathrm{F}_{\mathrm{MSY}}=0.18
$$

Georges Bank Haddock

Georges Bank Haddock

Georges Bank Haddock

Georges Bank Haddock

Georges Bank Haddock

Georges Bank Haddock

Georges BankHaddock

| | | Historical | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Catch | OFLs | Historical
 ABCs | Catch
 Assumption | F $_{\text {MSY }}$ | $75 \% \mathrm{~F}_{\text {MSY }}$ |
| 2010 | 25,903 | 80,007 | 62,515 | | | |
| 2011 | 16,670 | 59,948 | 46,784 | | | |
| 2012 | 6,935 | 51,150 | 39,846 | | | |
| 2013 | 6,828 | 46,185 | 35,783 | | | |
| 2014 | 18,601 | 46,268 | 35,699 | | | |
| 2015 | 20,687 | 56,293 | 43,606 | | | |
| 2016 | 17,274 | 160,385 | 77,898 | | | |
| 2017 | 17,387 | 258,691 | 77,898 | | | |
| 2018 | 16,647 | 94,274 | 73,114 | 19,455 | | |
| 2019 | | 99,757 | 73,114 | $19,454,822$ | 145,367 | |
| 2020 | | 100,825 | 73,114 | | 106,805 | 90,337 |
| 2021 | | | | | 100,009 | 88,856 |
| 2022 | | | | | 100 | |

Georges Bank Haddock

$$
75 \% \mathrm{~F}_{\mathrm{MSY}} \text { Projection }
$$

year	OFL	ABC	F	SSB
2020	184,822	145,367	0.36	594,412
2021	116,883	90,337	0.36	549,918
2022	114,925	88,856	0.36	470,979

$$
75 \% \mathrm{~F}_{\mathrm{MSY}} \text { Last Year Constant Projection }
$$

year	OFL	ABC	F	SSB
2020	184,822	88,856	0.21	611,549
2021	130,773	88,856	0.31	611,849
2022	129,580	88,856	0.31	532,886

$88,856 \mathrm{mt}$ constant ABC was chosen by the SSC in October $(\mathrm{MSY}=59,143 \mathrm{mt})$

Gulf of Maine Haddock

MODEL	ASAP (Level 2)
STOCK STATUS	Not Overfished \& Overfishing is not occurring
REBUILDING	Rebuilt
RETROSPECTIVE ADJUSTMENT	Yes (increase adjustment)
UNCERTAINTIES	retrospective error
REVIEWER	Panel found it appropriate to make adjustments to account for the retrospective pattern as a matter of protocol. The Panel suggests that the PDT present both retrospective adjusted and unadjusted projections to the SSC to demonstrate the impact of this decision.
COMMENTS	
CHANGES	New MRIP time series is incorporated in the model.

Gulf of Maine Haddock

	2017	2019
$F_{M S Y}$ proxy	$0.455(0.380-0.538)$	$0.369(0.307-0.447)$
$S S B_{M S Y}(\mathrm{mt})$	$6,769(2,525-27,545)$	$7,993(3,218-34,191)$
MSY (mt)	$1,547(584-6,160)$	$1,597(651-6,797)$
Median recruits (age 1) (000s)	$1,498(275-17,307)$	$1,789(285-17,883)$
Overfishing	No	No
Overfished	No	No

$\mathrm{SSB} / \mathrm{SSB}_{\mathrm{MSY}}=10.35$ and $\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}=0.22$

Gulf of Maine Haddock

Gulf of Maine Haddock

Gulf of Maine Haddock

Age	stock wt	selectivity	maturity
1	0.13	0.00	0.05
2	0.32	0.05	0.32
3	0.55	0.18	0.81
4	0.78	0.34	0.98
5	1.06	0.53	1.00
6	1.33	0.69	1.00
7	1.54	0.87	1.00
8	1.74	1.00	1.00
$9+$	2.25	0.79	1.00

Gulf of Maine Haddock

Gulf of Maine Haddock

Gulf of Maine Haddock

Historical							Historical
Year	Catch	OFLs	ABCs	Catch			
Assumption	$F_{M S Y}$	$75 \% F_{M S Y}$no rho adj $75 \% F_{M S Y}$					
2010	1,295	1,617	1,265				
2011	926	1,536	1,206				
2012	1,060	1,296	1,013				
2013	1,277	371	290				
2014	1,412	1,085	677				
2015	1,513	1,871	1,454				
2016	3,406	4,717	3,630				
2017	4,843	5,873	4,534				
2018	3,731	16,954	13,131				
2019		16,038	12,490	5,239		25,334	19,696
2020		13,200	10,186		19,996	16,794	12,634
2021					12,811	11,526	8,700
2022							

Gulf of Maine Haddock

$75 \% \mathrm{~F}_{\text {MSY }}$ Projection				
year	OFL	ABC	F	SSB
2020	25,334	19,696	0.28	94,793
2021	21,521	16,794	0.28	73,776
2022	14,834	11,526	0.28	60,503
$75 \% \mathrm{~F}_{\text {MSY }}$ Last Year Constant Projection				
year	OFL	ABC	F	SSB
2020	25,334	11,526	0.16	97,150
2021	23,709	11,526	0.17	83,044
2022	17,945	11,526	0.23	73,542

$11,526 \mathrm{mt}$ constant ABC was chosen by the SSC in October $\left(\mathrm{MSY}=1,597 \mathrm{mt}, 75 \% \mathrm{~F}_{\mathrm{MSY}}=1,500\right)$

MODEL	ASAP (Level 2)
STOCK STATUS	Not Overfished \& Overfishing is not occurring
REBUILDING	Rebuilt
RETROSDECTIVE ADJUSTMENT	Yes
UNCERTAINTIES	Selectivity assumption in both surveys and the fishery, retrospective pattern, strength of 2oi3 year class
REVIEWER	Stock status is insensitive to the shape of the survey selectivity patterns at older ages. Convergence issues in conducting the retrospective analysis; perhaps the model is overparameterized due to separate COMMENTS commercial and recreational fleets. Due to the risk- prone nature of managing under the assumption of dome-shaped selectivity, the panel recommends a decision table be used to communicate the results of the base assessment model and the sensitivity model.

Pollock

CHANGES	New MRIP time series is incorporated in the model.

	2017 base	2017 flat sensitivity	sel	base

$\mathrm{SSB} / \mathrm{SSB}_{\mathrm{MSY}}=1.7$ and $\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}=0.14$

Pollock
Base: Dome

B

Pollock

Age	stock wt	selectivity	maturity
1	0.09	0.05	0.09
2	0.22	0.07	0.29
3	0.45	0.11	0.64
4	0.97	0.16	0.89
5	1.72	0.33	0.97
6	2.51	0.72	0.99
7	3.24	1.00	1.00
8	3.98	0.92	1.00
$9+$	5.77	0.13	1.00

Exploitable Biomass

Pollock

Pollock

Pollock

Pollock

Pollock

Pollock

Pollock

Year	Catch	Historical OFLs	Historical ABCs	Catch Assumption	$\mathrm{F}_{\text {MSY }}$	$75 \% \mathrm{~F}_{\text {MSY }}$	Flat $\mathrm{F}_{\mathrm{MSY}}$	$\begin{gathered} \text { Flat } \\ 75 \% \mathrm{~F}_{\mathrm{MSY}} \end{gathered}$
2010	10,897	25,200	19,800					
2011	13,792	21,853	16,900					
2012	10,370	19,887	15,400					
2013	13,428	20,060	15,600					
2014	8,632	20,554	16,000					
2015	6,139	21,538	16,600					
2016	5,231	27,668	21,312					
2017	6,597	32,004	21,312					
2018	4,779	51,680	40,172					
2019		53,940	40,172	5,140				
2020		57,240	40,172		35,358	27,447	14,522	11,295
2021					26,765	22,062	11,924	9,867
2022					19,889	16,812	9,388	7,998

Pollock

Consequence Table

Biological status risk over the three years		state of nature						
final	75\%Fmsy final model catch in final model				75\%Fmsy final model catch in sensitivity model			
		F	catch	SSB		F	catch	SSB
	2019	0.036	5,140	190,927	2019	0.092	5,140	65,237
	2020	0.204	27,447	200,992	2020	0.583	27,447	69,808
	2021	0.204	22,062	184,293	2021	0.841	22,062	50,041
	2022	0.204	16,812	173,453	2022	1.133	16,812	36,160
sensitivity	75\%Fmsy sensitivity catch in final model				75\%Fmsy sensitivity catch in sensitivity model			
		F	catch	SSB		F	catch	SSB
	2019	0.036	5,140	190,927	2019	0.092	5,140	65,237
	2020	0.079	11,295	200,992	2020	0.195	11,295	69,808
	2021	0.076	9,867	200,898	2021	0.195	9,867	66,606
	2022	0.077	7,998	203,429	2022	0.195	7,998	65,482

Pollock

$75 \% \mathrm{~F}_{\text {MSY }}$ Projection				
year	OFL	ABC	F	SSB
2020	35,358	27,447	0.30	21,031
2021	28,475	22,062	0.30	184,358
2022	21,744	16,812	0.30	173,494
$75 \% \mathrm{~F}_{\text {MSY L Last Year Constant Projection }}$				
year	OFL	ABC	F	SSB
2020	35,358	16,812	0.18	201,031
2021	30,795	16,812	0.20	195,203
2022	24,087	16,812	0.27	190,204

$16,812 \mathrm{mt}$ constant ABC was chosen by the SSC in October

Overview of Presentation

- Biological - background on constant quotas, projection performance, and individual stock assessments with projected quotas
- Economic - summary of QCM results
- Social - summary of analysis

Economic Impacts - Quota Change Model

Methods:

- For the sector component of the groundfish fishery only
- Uses FY 2018 effort, ex-vessel prices, quota costs
- 500 synthetic fishing years are estimated
- Predicts landings and revenue under
- Alternative $1 /$ No Action and
- Alternative 2/Proposed FY 2020 sub-ACLs

Quota Change Model (QCM)- Past Performance

- The QCM has over-predicted groundfish revenue in the last three fishing years due in part to declining prices for groundfish stocks:
- FY16: overpredicted groundfish revenue by $\$ 4.6$ million
- FY17: overpredicted groundfish revenue by $\$ 4.2$ million
- FY18: overpredicted groundfish revenue by $\$ 9.5$ million

FYı18 used FYı6 data (prices).

- Average price for groundfish stocks declined from \$1.52 in FY16 to \$1.11 in FYı8

QCM- Past Performance

QCM Predicted and Realized Revenue (millions of \$)

QCM Results

- Alternative 2 is predicted to generate $\$ 3.0$ million more in groundfish revenue in FY2020 than No Action.
- FY2020 Alternative 1/No Action:
- $\$ 46$ million in groundfish revenue
- $\$ 65.2$ million in total revenue
- FY2020 Alternative 2:
- Under constant control rule
- $\$ 48.9$ million in groundfish revenue
- $\$ 69.9$ million in total revenue
- Under 75\% FMSY
- \$49.0 million in groundfish revenue
- \$70.0 million in total revenue

QCM Results

Comparison Stock-level Catch, Utilization, and Revenue (2018 \$ millions)

	Groundfish Gross	Total Gross Revenues	Operating Revenues	Sector Cost	Quota Cost	Operating Profit	Days Absent
Option	49.4	72.1	12.5	2.0	5.4	52.2	10,952
FY18 Realized	49	65.2	11.7	1.8	5.2	46.5	10,209
FY20 Prediction (Alt1/No Action)	46.0	69.9	12.5	1.9	5.4	50.2	10,907
FY20 Prediction (Alt 2, constant)	48.9						
FY20 Prediction (Alt 2, 75\%	49.0	70.0	12.5	1.9	5.4	50.2	10,942
FMSY)							

QCM Results: Stock-level changes under Alternative 2

- In FY 2020, GOM cod, GB winter flounder, SNE/MA yellowtail flounder predicted to be limiting (>99\% utilization)
- White hake and GB cod west also predicted to be nearly fully utilized (>90\% utilization)

QCM Results: Stock-level changes under Alternative 2

	Sub-ACL (mt),	Predicted Catch (mt)	Predicted Utilization
GB Haddock West	52,335	4,430	4.3%
GOM Haddock	6,939	2,735	22.9%
Redfish	$\mathbf{1 1 , 1 7 3}$	4,898	43.8%
Plaice	2,574	1,104	38.2%
Pollock	13,803	2,943	12.4%
White Hake	2,004	1,848	92.2%
GB Winter Flounder	501	498	99.4%
GB Cod West	851	826	97.0%
Witch Flounder	$\mathbf{1 , 2 7 5}$	873	68.5%
SNE Winter Flounder	462	312	67.6%
GOM Cod	267	267	99.9%
GB Haddock East	16,084	700	4.4%
GB Cod East	185	133	72.2%
GOM Winter Flounder	272	95	34.9%
CC/GOM Yellowtail Flounder	651	177	27.3%
GB Yellowtail Flounder	93	28	29.8%
SNE/MA Yellowtail Flounder	12	12	99.8%

QCM Results: Stock-level changes under Alternative 2

Constant

	Sub-ACL (mt)	Predicted Catch (mt)	Predicted Utilization
GB Haddock	52,335	4,445	8.5%
West	6,939	2,735	$39 \cdot 4 \%$
GOM Haddock	2,574	1,104	42.9%
Plaice	13,803	2,935	21.3%
Pollock	75\% FMSY		
	Sub-ACL (mt)	Predicted Catch (mt)	Predicted Utilization
GB Haddock	103,849	4,430	4.3%
West	11,918	2,735	22.9%
GOM Haddock	2,889	1,104	38.2%
Plaice	23,830	2,943	12.4%
Pollock			

QCM Results: Port-level changes under Alternative 2

- Most major ports predicted to see decreases in revenue in FY2020 compared to FY19 and FY18 predictions
- New Bedford precited to have identical revenue compared to FY19, \$8.1 million
- Gloucester: \$2.1 million less than predicted FY19
- Boston: \$1.9 million less than predicted FY19
- Portland: \$1.8 million less than predicted FY19

QCM Results: Port-level changes under Alternative 2

	FY20 Prediction	FY19 Prediction	FYı8 Prediction
Gloucester	12.5	14.6	14.0
Boston	11.6	13.5	13.2
Portland	7.4	9.2	8.3
New Bedford	8.1	8.1	13.2

Results for these top four groundfish ports are identical under both constant and 75% quota approaches.

Overview of Presentation

- Biological - background on constant quotas, projection performance, and individual stock assessments with projected quotas
- Economic - summary of QCM results
- Social-summary of analysis

Table 2- Crew Satisfaction with predictability of earnings, 2012 and 2018 Crew Surveys.

	Groundfish Crew	Other Crew	Total Crew
	$\mathrm{N}(\%)$	$\mathrm{N}(\%)$	$\mathrm{N}(\%)$
Total	$105(100 \%)$	$732(100 \%)$	$837(100 \%)$
Very satisfied	$0(0 \%)$	$32(4 \%)$	$32(4 \%)$
Satisfied	$23(22 \%)$	$312(43 \%)$	$335(40 \%)$
Neutral	$20(19 \%)$	$160(22 \%)$	$180(22 \%)$
Dissatisfied	$39(37 \%)$	$160(22 \%)$	$199(24 \%)$
Very dissatisfied	$21(20 \%)$	$66(9 \%)$	$87(10 \%)$
Don't know/No answer	$2(2 \%)$	$2(<1 \%)$	$4(<1 \%)$

$\boldsymbol{t}=5.97, \mathrm{p}<.001$
Survey question: How satisfied or dissatisfied are you with the following items relating to the job of fishing? [The predictability of your earnings]

Table 3- Trust in management among crew, 2012 Crew Survey Version 1 only.

	Groundfish Crew	Other Crew	Total Crew
	$\mathrm{N}(\%)$	$\mathrm{N}(\%)$	$\mathrm{N}(\%)$
Total	$13(100 \%)$	$59(100 \%)$	$72(100 \%)$
"Do not trust managing authorities"	$7(54 \%)$	$17(29 \%)$	$24(33 \%)$
Strongly agree	$6(46 \%)$	$21(36 \%)$	$27(38 \%)$
Agree	$0(0 \%)$	$11(19 \%)$	$11(15 \%)$
Neutral	$0(0 \%)$	$7(12 \%)$	$7(10 \%)$
Disagree	$0(0 \%)$	$2(3 \%)$	$2(3 \%)$
Strongly disagree	$0(0 \%)$	$1(2 \%)$	$1(1 \%)$
Don't know/No answer			2

$\boldsymbol{t}=\mathbf{2 . 2 8}, \mathrm{p}<.01$
Survey question: Please indicate the extent to which you agree or disagree with the following statements regarding the most recent federal government-led fisheries management process you participated in. [I do not trust the managing authorities to make the right decision when it comes to regulating fisheries.]

Comparing constant quota and 75\%FMSY quota approaches

- Biological
- Based on the 2019 assessments, GB haddock, GOM haddock, American plaice, and pollock are rebuilt, not overfished, and overfishing is not occurring.
- Risk of overfishing appears to be low based on the 2019 stock assessment and projections.
- Projections may be performing better for 3 of the 4 stocks based on the Wiedenmann and Jensen analysis.
- Some caveats discussed with respect to uncertainty by stock.
- Economic
- Economic impacts analysis using the QCM for sectors suggest no difference in predicted utilization between the two sets of quotas, driven largely by other limiting stocks in the multispecies fishery.
- Some caveats discussed with respect to American plaice.
- Social
- There may be some distributional impacts if quotas increase or decrease, depending on the extent that any given port or fishing community depends on the stocks in question and if the assumptions of the QCM are not fully met.
- Trust among fishery participants is already low, so this would be a possible opportunity to increase trust among fishery stakeholders by ensuring that the appropriate steps are followed as outlined by the Council's own current $A B C$ control rule for groundfish. Alternatively, in the past, industry has requested stability in quotas - which a constant quota approach could provide.

Extra Slides

Groundfish Control Rule

A. ABC should be determined as the catch associated with 75% of $F_{M S Y}$
B. If fishing at 75% of $F_{M S Y}$ does not achieve the mandated rebuilding requirements for overfished stocks, $A B C$ should be determined as the catch associated with the fishing mortality that meets rebuilding requirements ($F_{\text {rebuild }}$).
C. For stocks that cannot rebuild to $B_{\text {MSY }}$ in the specified rebuilding period, even with no fishing, the ABC should be based on incidental bycatch, including a reduction in bycatch rate (i.e., the proportion of the stock caught as bycatch).
D. Interim ABCs should be determined for stocks with unknown status according to case- by case recommendations from the SSC

	Plaice	GB Haddock	GOM Haddock	Pollock
SSB/SSB ${ }_{\text {MSY }}$	1.16	3.65	10.35	1.70
F/F $\mathrm{F}_{\text {MSY }}$	0.09	0.18	0.22	0.14
Rho adj	@age	SSB	SSB	@age
1	0.55	0.59	1.31	1.08
2	0.66	0.59	1.31	0.81
3	0.67	0.59	1.31	0.71
4	0.78	0.59	1.31	0.70
5	0.86	0.59	1.31	0.72
6	0.84	0.59	1.31	0.73
7	0.82	0.59	1.31	0.74
8	0.76	0.59	1.31	0.72
9	0.65	0.59	1.31	0.80
10	0.81	0.59	1.31	
11	0.81	0.59	1.31	
t+1	surveys	surveys	geo mean	survey

American Plaice

American Plaice

NEFSC Spring

American Plaice

Age-1 Recruitment vs. SSB

NEFSC Spring
NEFSC Autumm

American Plaice

American Plaice

Georges Bank Haddock

American Plaice

Historical Retrospective Age-ı Recruitment

Gulf of Maine Haddock

Gulf of Maine Haddock

Total Stock Biomass

Age	2019	2020	2021	2022
1	350,792	228,089	232,760	223,071
2	$1,095,180$	728,621	475,304	486,965
3	$5,805,188$	$1,529,874$	$1,015,729$	660,919
4	$4,035,744$	$6,626,817$	$1,721,018$	$1,140,654$
5	$4,543,685$	$4,369,049$	$6,979,430$	$1,805,452$
6	$78,814,856$	$4,473,065$	$4,136,670$	$6,538,908$
7	$11,752,131$	$70,795,588$	$3,795,697$	$3,487,564$
8	$2,171,517$	$10,233,621$	$57,346,612$	$3,041,711$
$9+$	$6,773,723$	$7,342,354$	$14,629,480$	$62,200,541$
total	$115,342,816$	$106,327,078$	$90,332,700$	$79,585,787$

Age	2019	2020	2021
1	0.00	0.00	0.00
2	0.01	0.01	0.01
3	0.05	0.01	0.01
4	0.03	0.06	0.02
5	0.04	0.04	0.08
6	0.68	0.04	0.05
7	0.10	0.67	0.04
8	0.02	0.10	0.63
9	0.06	0.07	0.16

Exploitable Biomass

Age	2019	2020	2021	2022
1	1,052	684	698	669
2	55,854	37,160	24,240	24,835
3	$1,056,544$	278,437	184,863	120,287
4	$1,372,153$	$2,253,118$	585,146	387,822
5	$2,412,697$	$2,319,965$	$3,706,077$	958,695
6	$54,145,806$	$3,072,995$	$2,841,892$	$4,492,230$
7	$10,212,602$	$61,521,366$	$3,298,461$	$3,030,693$
8	$2,171,517$	$10,233,621$	$57,346,612$	$3,041,711$
$9+$	$5,378,336$	$5,829,829$	$11,615,807$	$49,387,230$
total	$76,806,561$	$85,547,175$	$79,603,797$	$61,444,173$

	Age			
	2019	2020	2021	2022
1	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00
3	0.01	0.00	0.00	0.00
4	0.02	0.03	0.01	0.01
5	0.03	0.03	0.05	0.02
6	0.70	0.04	0.04	0.07
7	0.13	0.72	0.04	0.05
8	0.03	0.12	0.72	0.05
9	0.07	0.07	0.15	0.80

Pollock

2019 Assessment: 2016 recreational removals account for 49% of total removals

2017 Assessment: 2016 recreational removals account for 27% of total removals

Pollock

Total Stock Biomass

Age	2019	2020	2021	2022
1	2,834,632	2,378,537	2,375,821	2,373,005
2	2,928,220	5,318,805	4,438,569	4,426,659
3	5,618,610	4,930,786	8,887,487	7,394,611
4	10,963,941	9,901,278	8,567,938	15,411,554
5	22,574,769	15,837,764	14,002,345	12,061,709
6	39,895,521	26,573,797	17,929,071	15,627,373
7	26,987,846	40,514,212	24,650,709	16,305,360
8	24,673,588	25,776,530	34,206,120	20,235,822
9+	62,914,666	79,189,673	89,396,168	105,142,642
total	199,391,793	210,421,382	204,454,228	198,978,737

Exploitable Biomass

Age	2019	2020	2021	2022
1	129,894	108,994	108,869	108,740
2	209,224	380,033	317,139	316,288
3	600,214	526,737	949,416	789,938
4	$1,784,750$	$1,611,766$	$1,394,720$	$2,508,748$
5	$7,499,716$	$5,261,570$	$4,651,813$	$4,007,102$
6	$28,721,086$	$19,130,677$	$12,907,273$	$11,250,264$
7	$26,987,846$	$40,514,212$	$24,650,709$	$16,305,360$
8	$22,590,174$	$23,599,985$	$31,317,789$	$18,527,129$
$9+$	$8,112,022$	$10,210,471$	$11,526,465$	$13,556,767$
total	$96,634,926$	$101,344,444$	$87,824,194$	$67,370,337$

Proportions (Total Stock Biomass)

			2019	2020
Age	2021	2022		
1	0.01	0.01	0.01	0.01
2	0.01	0.03	0.02	0.02
3	0.03	0.02	0.04	0.04
4	0.05	0.05	0.04	0.08
5	0.11	0.08	0.07	0.06
6	0.20	0.13	0.09	0.08
7	0.14	0.19	0.12	0.08
8	0.12	0.12	0.17	0.10
9	0.32	0.38	0.44	0.53

Proportions (Exploitable Biomass)

Age	2019	2020	2021
1	0.00	0.00	0.00
2	0.00	0.00	0.00
3	0.01	0.01	0.01
4	0.02	0.02	0.02
5	0.08	0.05	0.05
6	0.30	0.19	0.15
7	0.28	0.40	0.28
8	0.23	0.23	0.36
9	0.08	0.10	0.13

