Incorporating Measures of Scientific Uncertainty in Red hake OFL

NOAA FISHERIES NEFSC

NEFMC's Science and Statistical Committee Webinar

Thurs. November 12, 2020

PDT's proposed options for OFL

Plan B proportional change (2017-2019) applied to:
(Option \#1)
2017-2019 actual estimated catch
(Option \#2)
Existing OFL from 2018-2020 specifications

(Option \#3)

1981(3?)-2009 OFL forecast from Plan B smooth in that time period (previous estimate using the Plan B smooth approach)

(Option \#4)

2017-2019 OFL forecast from Plan B smooth in that time period (previous estimate using the Plan B smooth approach)

(Option \#5)

Fixed exploitation rate applied to SWAB 2017-2019 (TYMA).

Justification

Follows standard Plan B smooth approach application (yellowtail flounder)

Issues

Catch may not be representative of OFL, especially with fishing restrictions. May be driven by circumstances that affect the fishery or by actual catch that exceed the OFL.

Applies Plan B smooth approach to previous OFL, rather than actual catch

Consistent with overfishing definition, but using Plan B method to evaluated OFL during the MSY proxy time period

Follows Plan B smooth approach, using Plan B estimate for 2017-2019 as representative of MSY proxy, rather than actual catch.

Fishing mortality estimates are exceptionally low, particularly for the northern stock. Uses an F MSY proxy that is more consistent with life historv

Uses OFL estimate from rejected AIM model application

Period may not be representative of contemporary stock productivity.

May be sensitive to rapid changes in survey swept area biomass.

Catch limits may exceed availability of the stock due to regulations. Mean exploitation rates for time series were rejected by the MTA as the basis for catch advice.

OFL General Framework

- Uncertainty in OFL

Estimated as a cross product between the uncertainty (i.e. probability distribution) in $I_{\text {2017-2019 }}$ (Slope of the Index multiplier) and the uncertainty in catch or forecast OFL

- Uncertainty in $\mathrm{I}_{2017-2019}$

Mean and SE of the estimated slope derived from a logtransformed LOESS survey smoother from 2017-2019 and assumed lognormal error structure

Some additional details.

- Option \#1: Probability distribution for catch based on estimated variance for catch based on CY catch 2017-2019
- Option \#2: 2018-2020 OFL probability distribution was directly applied to the distribution for the Index multiplier.
- Alternatively, the OFL point estimate can be applied to the distribution of the index multiplier
- Option \#3: Estimated variance for Forecast OFL based on years 1983-2009
- Option \#4: Same as option \#3, but uses limited set of years (2017-2019)
- Option \#5: Variance for the fixed relative exploitation rate was based on recent 10 year relative exploitation rate. Explored three options for Relative F (0.02. 0.06 and 0.12)

Option \#1: Northern red hake OFL estimate and $90 \% \mathrm{Cl}$

- Plan B proportional change (2017-2019) applied to 2017-2019 actual estimated catch
- Median OFL = 229 MT [183 - 283MT]
- $\mathrm{P} * 40 \%=222 \mathrm{MT}$

Option \#2: Northern red hake OFL estimate and $90 \% \mathrm{Cl}$

- (2a) Plan B proportional change (2017-2019) applied to existing OFL probability distribution from 2018-2020 specifications
- (2b) 2018-2020 OFL point estimate (836 MT) applied to index multiplier probability distribution
- Median OFL (2a) = 759 MT [182-1,306 MT]
- Median OFL (2b) = 782 MT [758 - 808 MT]
- $\mathrm{P} * 40 \%=677 \mathrm{MT}$

Option \#3: Northern red hake OFL estimate and 90\% CI

- Plan B proportional change (2017-2019) applied to 1981(3?)-2009 OFL forecast from Plan B smooth in that time period (previous estimate using the Plan B smooth approach)
- OFL variance estimate was high resulting in unstable probability distribution at low catch values
- Unreliable

Option \#4: Northern red hake OFL estimate and 90\% CI

- Plan B proportional change (2017-2019) applied to 2017-2019 OFL forecast from Plan B smooth in that time period (previous estimate using the Plan B smooth approach)
- Median OFL = 267 MT [190 - 355 MT]
- $\mathrm{P} * 40 \%=254 \mathrm{MT}$

Option \#5a: Northern red hake OFL estimate and 90\% CI

- Fixed exploitation rate applied to SWAB 2017-2019 (TYMA).
- Fixed Relative F = 0.02
- Median OFL = 4,621 MT [3,607 - 5,913 MT]
- $\mathrm{P} * 40 \%=4,453 \mathrm{MT}$

Option \#5b: Northern red hake OFL estimate and 90\% Cl

- Fixed exploitation rate applied to SWAB 2017-2019 (TYMA).
- Fixed Relative F = 0.06
- Median OFL = 13,873 MT [10,904 - 17,483 MT]
- $\mathrm{P} * 40 \%=13,384 \mathrm{MT}$

Option \#5c: Northern red hake OFL estimate and 90\% CI

- Fixed exploitation rate applied to SWAB 2017-2019 (TYMA).
- Fixed Relative $F=0.12$
- Median OFL = 27,742 MT [21,807 - 34,955 MT]
- $\mathrm{P} * 40 \%=26,775 \mathrm{MT}$

Option \#1: Southern red hake OFL estimate and $90 \% \mathrm{Cl}$

- Plan B proportional change (2017-2019) applied to 20172019 actual estimated catch
- Median OFL = 1,813 MT [731 - 3,067 MT]
- $\mathrm{P}^{*} 40 \%=1,355 \mathrm{MT}$

Option \#2: Southern red hake OFL estimate and 90% Cl

- (2a) Plan B proportional change (2017-2019) applied to existing OFL probability distribution from 2018-2020 specifications
- (2b) 2018-2020 OFL point estimate (836 MT) applied to index multiplier probability distribution
- Median OFL (2a) = 1,428 MT [950 - 1,940 MT]
- Median OFL (2b) = 1,465 MT [1,443-1,489 MT]
- $\mathrm{P} * 40 \%=1,355 \mathrm{MT}$

Southern Red hake OFL (Option 2a)

Option \#3: Southern red hake OFL estimate and 90\% CI

- Plan B proportional change (2017-2019) applied to 1981(3?)-2009 OFL forecast from Plan B smooth in that time period (previous estimate using the Plan B smooth approach)
- OFL variance estimate was high resulting in unstable probability distribution at low catch values
- Unreliable

Option \#4: Southern red hake OFL estimate and $90 \% \mathrm{Cl}$

- Plan B proportional change (2017-2019) applied to 2017-2019 OFL forecast from Plan B smooth in that time period (previous estimate using the Plan B smooth approach)
- OFL = 2,062 MT [1,454-2,763 MT]
- $\mathrm{P} * 40 \%=1,964 \mathrm{MT}$

Option \#5a: Southern red hake OFL estimate and 90\% CI

- Fixed exploitation rate applied to SWAB 2017-2019 (TYMA).
- Fixed Relative F = 0.02
- Median OFL = 1,253 MT [409 - 2,756 MT]
- $\mathrm{P} * 40 \%=1,089 \mathrm{MT}$

Option \#5b: Southern red hake OFL estimate and 90\% CI

- Fixed exploitation rate applied to SWAB 2017-2019 (TYMA).
- Fixed Relative F = 0.06
- Median OFL = 3,880 MT [2,039 - 6,500 MT]
- $\mathrm{P} * 40 \%=3,563 \mathrm{MT}$

Option \#5c: Southern red hake OFL estimate and 90\% CI

- Fixed exploitation rate applied to SWAB 2017-2019 (TYMA).
- Fixed Relative $F=0.12$
- Median OFL = 7,820 MT [4,201 - 12,472 MT]
- $\mathrm{P} * 40 \%=7,225 \mathrm{MT}$

Summary Red hake OFL Alternatives

Alternatives for OFL	Northern OFL [90\% Cl] (P*40\%) (mt)	\% Delta OFL	Southern OFL [90\% CI] (P*40\%) (mt)	\% Delta OFL
Option \#1	229 [193-283] (222)	-72	1,813 [731-3,067] (1,635)	62
Option \#2 (a)	$759[182-1,306](677)$	-6	1,428 [950-1,940] (1,355)	27
Option \#2 (b)	782 [758-808] (NA)	-3	1,465 [1,443-1,489] (NA)	31
Option \#3	N/A		NA	
Option \#4	267 [190-355] (254)	-67	2,062 [1,454-2,763] (1,964)	84
Option \#5 (a)	4,621 [3,607-5,913] (4,453)	473	1,253 [409-2,756] (1,089)	12
Option \#5 (b)	$13,873[10,904-17,483](13,384)$	1619	3,880 [2,039-6,500] (3,363)	246
Option \#5 (c)	$27,742[21,807-34,955](26,775)$	3338	7,820 [4,201-12,472] $(7,225)$	597

