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Recent advances in the application of stock identification methods have revealed inconsistencies between the spatial structure of biological
populations and the definition of stock units used in assessment and management. From a fisheries management perspective, stocks are typi-
cally assumed to be discrete units with homogeneous vital rates that can be exploited independently of each other. However, the unit stock
assumption is often violated leading to spatial mismatches that can bias stock assessment and impede sustainable fisheries management. The
primary ecological concern is the potential for overexploitation of unique spawning components, which can lead to loss of productivity and
reduced biodiversity along with destabilization of local and regional stock dynamics. Furthermore, ignoring complex population structure and
stock connectivity can lead to misperception of the magnitude of fish productivity, which can translate to suboptimal utilization of the re-
source. We describe approaches that are currently being applied to improve the assessment and management process for marine fish in situa-
tions where complex spatial structure has led to an observed mismatch between the scale of biological populations and spatially-defined
stock units. The approaches include: (i) status quo management, (ii) “weakest link” management, (iii) spatial and temporal closures, (iv) stock
composition analysis, and (v) alteration of stock boundaries. We highlight case studies in the North Atlantic that illustrate each approach and
synthesize the lessons learned from these real-world applications. Alignment of biological and management units requires continual
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monitoring through the application of stock identification methods in conjunction with responsive management to preserve biocomplexity
and the natural stability and resilience of fish species.

Keywords: biocomplexity, connectivity, fisheries management, population structure, spatial structure, stock assessment, stock identification.

Introduction
In recent years, substantial advances have been made in research

to identify and delineate biologically discrete fish populations.

These research efforts have demonstrated that marine fish with lit-

tle population structure and essentially homogeneous genetic and

phenotypic characteristics are the exception rather than the rule

(Waples and Gaggiotti, 2006; Reiss et al., 2009; Ames and Lichter,

2013; Ciannelli et al., 2013). It is now clear that the population

structure of marine species falls along a continuum from panmic-

tic (e.g. American eel Anguilla rostrata, Côté et al., 2013; European

eel Anguilla anguilla, Als et al., 2011) to numerous distinct popu-

lations (e.g. herring Clupea harengus, Ruzzante et al., 2006;

Hatfield et al., 2007; Geffen et al., 2011), with the majority of spe-

cies exhibiting complex structure within this range (e.g. horse

mackerel Trachurus trachurus, Abaunza et al., 2008; redfish

Sebastes mentella, Cadrin et al., 2010; cod Gadus morhua, Smedbol

and Wroblewski 2002; Wright et al., 2006, Kelly et al., 2009).

The mechanisms of fish population differentiation and connec-

tivity within the marine environment are complicated, and for

many species better understanding of the factors that restrict and

promote the exchange of individuals is needed. Oceanographic

and environmental features (e.g. currents, fronts, eddies, and tem-

perature and salinity gradients) as well as the bio-physical attrib-

utes of eggs and larvae (e.g. buoyancy and swimming capabilities)

can promote retention or dispersal, and have been identified as

principal factors in structuring marine fish populations (e.g. Iles

and Sinclair, 1982; Jørgensen et al., 2005; Cowen et al., 2006). Fish

behaviour (e.g. natal homing, spawning site fidelity, straying, en-

trainment, resident or migratory life history strategies) and habitat

requirements across the life cycle of fish act as other key processes

affecting population differentiation and connectivity (Petitgas

et al., 2010, 2013; Secor, 2015). Additionally, adaptation to local

environmental conditions can act as an important selective pres-

sure maintaining population structure (Pampoulie et al., 2006;

Kovach et al., 2010).

Population structure can have significant consequences, in-

cluding mediating species responses to fishing and environmental

change and playing a key role in species persistence. The seminal

research on this topic examined the impact that spatial structure

and connectivity could have on the persistence and recovery of

populations (e.g. extinction-recolonization dynamics of classical

metapopulation theory, Levins, 1969, 1970; island-mainland

structure, Simberloff 1974; source-sink dynamics, Pulliam, 1988;

and rescue effects, Gotelli, 1991). In more recent years, there has

been a shift toward examining questions that are relevant to the

temporal scales addressed by fisheries scientists (Kritzer and Sale,

2004). The questions now focus on how populations might func-

tion to support the resilience and stability of marine resources

and the implications of the loss of biocomplexity over ecological

rather than evolutionary time scales (Secor et al., 2009; Kerr et al.,

2010a,b, 2014b).

From a traditional fisheries management perspective, single

species advice is provided for individual stock units. It is assumed

that stocks are discrete units with homogeneous vital rates (e.g.

growth, natural mortality) and that specific stocks can be

exploited independently of each other (unit stock assumption,

Secor, 2014) or that catches can be assigned to their stock of origin

(Cadrin et al., 2014a). Violation of the unit stock assumption (i.e.

mis-classification of the appropriate spatial scale of management)

could introduce significant problems affecting stock assessment

and fisheries management that can impact sustainability of the re-

source, profitability of the fishery, resilience of fishing communi-

ties, and impede conservation or biodiversity goals. In some cases,

what is assumed to be a homogeneous stock may in fact be a

mixed stock, composed of populations with unique demographics

and dynamics (Cadrin and Secor, 2009; Kell et al., 2009; Hintzen

et al., 2015). Thus, short-term recommendations (e.g. total allow-

able catch, TAC) and long-term strategies (e.g. rebuilding targets

and harvest control rules) produced from the stock assessment

may be based on an erroneous perception of stock structure and

not account for differentiation in productivity among population

components. In this context, the harvest of a mixed stock, com-

posed of unique populations of a single species, can potentially

lead to overfishing less productive populations and under-fishing

more productive populations (Ricker, 1958; Frank and Brickman,

2000; Fu and Fanning, 2004; Cadrin and Secor, 2009).

Additionally, management units that are only a portion of a self-

sustaining population can also pose problems for assessment and

management due to difficulty in estimating biomass and provid-

ing catch advice for a portion of a population which may vary in

its representation in a stock area over time (e.g. transboundary

species that exhibit connectivity between United States and

Canadian waters such as winter skate, Frisk et al., 2008; and

Atlantic halibut, Shackell et al., 2016). Thus, understanding the

spatiotemporal scale of population structure for a species in rela-

tion to management units is important for effective long-term sus-

tainable management (Goethel et al., 2011).

Despite increased recognition of complex population structure

and stock mixing, the disparities between population structure

and current management units have not been reconciled (Reiss

et al., 2009). The lack of integration of information on biological

population structure in the assessment and management process

is partly due to a lack of understanding of the consequences and

costs of ignoring these phenomena. Furthermore, depending on

the geographic location, there may be political, legal, cultural,

and social pressures that prevent revision of stock boundaries or

adding complexity to stock assessments. For example, in Europe,

sampling units and intensities are currently fixed by regulation

through the relatively inflexible data collection framework (EU,

2008), which creates financial consequences for member states

when sampling methodology is altered to accommodate a new

stock area design. In the United States, allocation of fishermen’s

quota is linked to historical patterns of fishing by stock area.

Thus, there are important implications for the fishing industry

and consequent challenges for fisheries management in changing

management unit boundaries (e.g. Annala, 2012). However, it is
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important to highlight that there are a range of management

strategies that could be adopted or changes that could be incor-

porated in the stock assessment process to address complex spa-

tial structure without changing management boundaries (Kritzer

and Liu, 2014).

In recent years, there has been an increase in the application of

simulation models to evaluate alternative approaches to address

misalignment of biological and management units (e.g. Kell et al.,

2009; Cope and Punt, 2011; Ying et al., 2011; Kerr et al., 2014b).

Management strategy evaluation (MSE) is currently considered

the state-of-the-art in fisheries management decision-making and

involves simulating a range of management options (e.g. the scale

of assessment and management) in order to illustrate the poten-

tial biological and economic consequences (Sainsbury et al., 2000;

Kell et al., 2006; Pastoors et al., 2007; Kraak et al., 2008). MSEs

simulate the managed system as a whole (e.g. population dynam-

ics, data collection, stock assessment, and policy implementation)

including error associated with each stage (e.g. observation error,

process error, and implementation error) and quantitatively eval-

uate the performance of each alternative management strategy

(Sainsbury et al., 2000; Bunnefeld et al., 2011). Developing spa-

tially explicit MSEs can provide insight regarding the potential

consequences of ignoring population structure and demonstrate

what type of management strategy might work best for any given

situation (e.g. whether incorrect stock boundaries are truly detri-

mental to achieving sustainable harvest or if alternate manage-

ment actions such as spatiotemporal closures might be

sufficient).

We provide a review that summarizes the spectrum of

approaches that have been applied to integrate new information

on complex population structure and mixing of marine fish into

assessment and management. Focus is placed on current applica-

tions and the lessons learned from their implementation in the

North Atlantic based on our experience as contributors to the

International Council for the Exploration of the Sea (ICES)

Workshop on Implications of Stock Structure (WKISS). We have

limited our review to real-world applications, whereas the full

breadth of potential techniques that could be used to address mis-

matches in scale was previously reviewed by Goethel et al. (2011),

Kerr and Goethel (2014), Kritzer and Liu (2014), and Goethel

et al. (2016). We conclude with a summary of best practices and

lessons learned in integrating new information on biological pop-

ulation structure into assessment and management.

Approaches applied to address misalignment of
biological and management units
There are a range of approaches to improve assessment and man-

agement in situations where a mismatch in spatial scale occurs

and the degree of overlap between biological populations and

mixed stock composition of the fisheries are key determinants of

the appropriate management strategy. We selected case studies

that illustrate each approach and, in the case of approaches (ii) to

(v), were specifically implemented with the goal of aligning as-

sessment or management based on new information on popula-

tion structure. It is important to note that these approaches are

not mutually exclusive and in many cases multiple techniques

have been applied over time (e.g. North Sea herring and bluefin

tuna). We have arranged the approaches in a gradient of com-

plexity with respect to implementation from relatively simple to

complex.

(i) Status quo management—there is insufficient information

to change the current management practices.

(ii) “Weakest link” management—there is some knowledge of

spatial structure, but insufficient information exists to ex-

plicitly manage all spawning components. The assumed

weakest spawning component is protected through manage-

ment measures.

(iii) Spatial and temporal closures—there is knowledge of spatial

structure, but insufficient information exists to alter the

scale of assessment. Spatial and temporal closures are used

to protect spawning populations.

(iv) Stock composition analysis—there is knowledge of stock

mixing, but insufficient information exists to explicitly

model connectivity within a stock assessment. Stock com-

position data are used to parse data (catches or samples) to

Figure 1. Illustration of spawning habitat (dark grey) of western and eastern origin Atlantic bluefin tuna (Thunnus thynnus) and range of
overlap (hatched area) relative to the ICCAT management boundary (dashed line).
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the appropriate stock of origin before being input to the

stock assessment or used in management.

(v) Alteration of stock boundaries—sufficient information is

available on population structure and unique harvest stocks

exist, which allows updating and redrawing stock bound-

aries to improve the alignment of biological populations

and management units.

Approach I: maintain status quo
Case study I: Atlantic bluefin tuna
Atlantic bluefin tuna (Thunnus thynnus) is a highly migratory

species composed of two spawning populations that exhibit natal

homing with the western population spawning in the Gulf of

Mexico and adjacent waters and the eastern population spawning

in the Mediterranean Sea (Figure 1; Boustany et al., 2008; Rooker

et al., 2008, 2014). However, there is also evidence of extensive

migration of bluefin that results in mixing of these populations

within the North Atlantic Ocean (Mather et al., 1974, Mather,

1980; NRC, 1994; ICCAT, 2001, 2013; Block et al., 2005; Rooker

et al., 2008, 2014). Otolith chemistry information has revealed a

large contribution of eastern-origin fish to western fisheries (as

high as 63% at times in the United States mid-Atlantic fisheries;

Siskey et al., 2016). There is also new evidence suggesting an addi-

tional spawning location within the western stock area in the

Slope Sea (Richardson et al., 2016). However, further information

on the magnitude of spawning at this location and its role in pop-

ulation dynamics of the species is needed to understand the im-

plications of this finding (Walter et al., 2016).

Atlantic bluefin tuna were assessed and managed as a single

stock historically, but recognition of stock structure led to sepa-

rate assessments of eastern and western Atlantic stocks since

1980. The most recent assessments for Atlantic bluefin support

significant differences in relative abundance and productivity be-

tween stocks with the eastern stock estimated to be an order of

magnitude larger in biomass than the western stock (ICCAT,

2014). Given the magnitude of difference in relative abundance,

even low rates of movement of fish from the eastern stock into

the western stock area could have a large influence on the abun-

dance and stock composition of fish in this region (Butterworth

and Punt, 1994; ICCAT, 1994; NRC, 1994). Currently, the degree

of stock mixing is considered an important source of uncertainty

in the assessment of Atlantic bluefin tuna, particularly for the

western stock unit (ICCAT, 2014). Stock assessments of Atlantic

bluefin tuna have attempted to incorporate stock structure and

mixing for decades, and models have been developed to reflect an

expanding understanding of movement and stock mixing (e.g.

the VPA 2-Box overlap model, Porch et al., 2001, and the Multi-

stock Age Structured Tag-Integrated model, Taylor et al., 2011).

These models have advanced understanding of the implications

of stock mixing on estimates of stock biomass and sustainable

yield, but lacked adequate data to provide credible or robust

advice to management (ICCAT, 2008, 2012).

Despite increased awareness of population structure and mix-

ing across the management boundary, the scale of assessment and

management of Atlantic bluefin tuna has remained the same (i.e.

status quo management that assumes no mixing) since the 1980s.

In 2013, a workshop was convened to review existing information

on population structure and stock mixing of Atlantic bluefin

tuna, including information derived from otolith chemistry,

genetics, tagging, and life history parameters (ICCAT, 2013). The

workshop recommended that the effects of complex population

structure on scientific advice should be evaluated and ICCAT has

prioritized the need to develop and apply a MSE for Atlantic

bluefin tuna.

Lessons learned
Ignoring stock mixing can result in inaccurate estimates of stock

productivity and sustainable yield and misinterpretation of trends

in abundance (e.g. Kerr et al., 2014a; Secor 2015). This is particu-

larly true for overlapping fishery resources that exhibit asymmetry

in production, like Atlantic bluefin tuna populations. Existing in-

formation on stock mixing of bluefin tuna suggests that the cur-

rent two-box view is inadequate and may impede sustainable

management of western origin fish (Kerr et al., 2014a). ICCAT is

currently approaching this challenge using MSE, and plans are

developing to test the performance of alternative approaches for

meeting fishery management objectives (e.g. Carruthers et al,

2016). It is important to note that Atlantic bluefin tuna migrate

across domestic and international boundaries and their manage-

ment is characterized by complex, international politics which

can make achieving the goal of sustainable management more

challenging.

Despite knowledge that complex spatial population structure

exists, data and modelling limitations often impede successful ap-

plication of assessment and management frameworks that can

match the scale of biological processes. Status quo management is

not optimal, but, in situations of high complexity and limited

data (typical for many highly migratory species), it often repre-

sents the default option. Furthermore, Porch et al. (1998) demon-

strated through simulation analysis with a bluefin-like species

that if spatial structure and movement are directly incorporated

into the assessment, incorrectly specifying movement can

Figure 2. North Sea herring (Clupea harengus) are managed as a
single stock (ICES Subarea 4 and Divisions 3a and 7d), but diverse
spawning components (Shetland, Buchan, Banks, and Downs;
hatched areas) are recognized and management is designed to
preserve the Downs component. Map is modified from Bierman
et al., 2010.

Mismatches between population structure and stock units 1711

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/74/6/1708/2629217 by N
EFM

C
 user on 28 M

ay 2020

Deleted Text: M
Deleted Text: S
Deleted Text: Q
Deleted Text: S
Deleted Text: A
Deleted Text: B
Deleted Text: ,
Deleted Text:  (MAST)
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,


potentially lead to more biased assessment results than if move-

ment is ignored. Thus, in certain instances, it may be more risk

averse to ignore complex population dynamics in the stock as-

sessment framework than attempting to include dynamics that

are not fully understood. In these cases, however, enhanced mon-

itoring (e.g. stock composition analysis of samples collected

through robust statistically designed surveys and fishery-

dependent sampling) is critical to track changes in the relative

abundance of unique populations. Furthermore, implementation

of alternate spatiotemporal management measures (e.g. to protect

spawning components) can be useful (e.g. Gulf of Mexico spawn-

ing closures; Armsworth et al., 2010).

Approach II: “weakest link” management
Case study II: North Sea autumn spawning herring
North Sea herring are managed as a single stock (spatially delin-

eated as ICES Subarea 4 and Divisions 3a and 7d), but diverse

spawning components (Shetland/Orkney, Buchan, Banks, and

Downs) are recognized and their preservation is considered im-

portant (Figure 2, Bierman et al., 2010). The North Sea herring

stock collapsed during the 1970s, resulting in a moratorium on

the fishery until 1981 (Dickey-Collas et al., 2010). During the re-

building phase, measures were put in place to ensure that one of

the minority spawning components of the stock, the Downs com-

ponent (herring that spawn in December and January in the

southern North Sea and eastern English Channel), was protected

from being targeted during spawning.

Regional quota for the spawning area of the Downs component

was set at a fixed proportion (11%) of the total North Sea herring

allowable catch (Dickey-Collas et al., 2010). The fixed allocation

of this separate quota was not based on robust science, because

the size of this component was unknown and no monitoring was

in place to ascertain its temporal dynamics. The aim of this man-

agement strategy was to conserve what was perceived as the weak-

est component of the stock. The Downs component has recovered

to a substantial degree since the implementation of conservation

measures (ICES, 2009a). However, the extensive rebuilding time

of the Downs component (�25 years), given the relatively short

generation time of herring, indicates the management strategy did

not have an immediate impact (Dickey-Collas et al., 2010). Today,

however, the spawning component is considered to be an integral

contributor to the autumn-spawning stock (Dickey-Collas et al.,

2010).

Lessons learned
“Weakest-link” management is a practical approach to account

for biocomplexity and preserve critical spawning components

when limited data are available to directly assess mixing or yield

from a sub-stock unit (Reiss et al., 2009; ICES, 2010a). Minority

components within a stock complex can be adversely impacted if

the fishery exploits the resource without regard for component

productivity (Fu and Fanning, 2004; Ruzzante et al., 2006;

Dickey-Collas et al., 2010; Payne, 2010; Ying et al., 2011). Less

productive components may not be as valuable to the fishery, but

can help maintain regional stability (particularly in the context of

a metapopulation). They can also protect against collapse of the

resource through the “portfolio effect”, whereby diversification

reduces the overall species extinction risk (Secor et al., 2009; Kerr

et al., 2010a,b).

Although fairly easy to adopt by managers, the “weakest link”

approach can also lead to under-utilization of the remaining pop-

ulation components and will not be effective in optimizing the

long term yield (Ricker, 1958; Punt and Donovan, 2007). A

“weakest link” approach can result in displacement of fishing ef-

fort to other more productive components, which may be impor-

tant to stock productivity, and may result in an overall reduction

in biomass and decrease in yield (Tuck and Possingham, 1994).

Additionally, monitoring minority populations or spawning com-

ponents may be difficult and costly as survey samples may be

dominated by the more productive populations or components. A

critical decision for “weakest link” management is defining which

components of the population are “valuable” in a biocomplexity

context and, therefore, require conservation. Since the implemen-

tation of separate quota management, the Downs component has

recovered and substantial variation in the strength of this spawn-

ing component has been documented (ICES, 2009a; Payne, 2010).

This example demonstrates that even with very little science, a

precautionary measure can bring about conservation success, but

potentially at the cost of foregone utilization. Thus, from a man-

agement perspective this approach may be deemed suboptimal,

because potential fishing opportunities and yield were lost.

Approach III: temporal and spatial closures
Case study III: Gulf of Maine stock of Atlantic cod
Two genetically distinct spawning populations of Atlantic cod

(G. morhua) have been identified within the Gulf of Maine stock

area: (i) a spring-spawning complex, which spawns in inshore

Gulf of Maine waters from Massachusetts Bay to Bigelow Bight in

spring; and (ii) a winter-spawning complex, which spawns within

the inshore Gulf of Maine and southern New England waters in

winter (Kovach et al., 2010). These two populations overlap spa-

tially outside of the spawning periods and for assessment and

management purposes are lumped together within the Gulf of

Maine stock unit (Kerr et al., 2014b).

Due to perceived declines in the Gulf of Maine cod stock and

the relative ineffectiveness of other management efforts (e.g. trip

limits and restrictions on days at sea) to halt declines in stock bio-

mass, management measures based on fine scale spatial restric-

tions were enacted to protect coastal spawning groups (Dean

et al., 2012; Armstrong et al., 2013). Closures of three areas to

both commercial and recreational fishing effort during spawning

were enacted in Massachusetts state waters including: (i)

Massachusetts Bay Winter Cod Conservation Zone (enacted in

2003), (ii) Massachusetts Bay Spring Cod Conservation Zone (en-

acted in 2009), and (iii) the Gulf of Maine Cod Spawning

Protection Area (Figure 3). Seasonal rolling closures aimed at pro-

tecting coastal spawning components in US federal waters from

April-June preceded these closures (i.e. the rolling closures were in

effect beginning in the late 1990s), but they did not exclude recrea-

tional exploitation which expanded in the early 2000s (Figure 3,

Armstrong et al., 2013). Furthermore, a larger scale year-round

closure, the Western Gulf of Maine Closure, was implemented in

1998 to reduce mortality of Gulf of Maine cod (Figure 3).

However, recreational fishing has also been permitted within this

closed area.

The seasonal and year-round closures enacted for Gulf of

Maine cod were effective in protecting spawning activity and a

portion of the cod resource (although the extent is unknown;

Zemeckis et al., 2014a), but these protections were not enough to

1712 L. A. Kerr et al.
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halt the decline in cod abundance (NEFSC, 2014). A key factor

influencing the lack of response may have been recreational ex-

ploitation, which was permitted within the federal closed areas

(Armstrong et al., 2013). Although, the year-round closure did

not appear to enhance local abundance or biomass within the

closed area (Kerr et al., 2012), measurable recovery of the popula-

tion age structure within the closure did occur (as evidence from

comparisons of age structure inside and outside of the closure;

Sherwood and Grabowski, 2016), which should act to enhance

long-term stock productivity given the disproportionate repro-

ductive value of older and larger fish (Berkeley et al., 2004).

Lessons learned
Alternative spatiotemporal management options have the poten-

tial to contribute to sustainable management by conserving fine-

scale population structure (Kraak et al., 2012; Rijnsdorp et al.,

2012). By focusing on the spatial aspects of the fishery resource

and accounting for biological sensitivity of defined-areas at spe-

cific times of the year (e.g. spawning aggregations or nursery

grounds), closures can eliminate direct exploitation of vulnerable

life stages, while protecting them from disturbance (i.e. the latter

has been shown to increase reproductive success for species that

form spawning aggregations like cod; Dean et al., 2012;

Armstrong et al., 2013). In many instances, fishermen are aware

of the sensitivity of various life stages and can be a valuable source

of information for identifying fine-scale spawning aggregations

and contribute as key partners in implementing conservation

measures.

It is challenging to assess the impact of spawning and mortality

closures at the stock-level, because fishing pressure outside the

closures along with ecosystem changes may have a stronger im-

pact on long-term stock trajectories (Pershing et al., 2015; Hare

et al., 2016). Seasonal closures designed to protect Atlantic cod

spawning in the Firth of Clyde off the Scottish west coast (ICES

Area 6a) implemented in 2001 also did not show evidence of local

recovery, but implementation was most likely too late to be useful

in the short-term (Clarke et al., 2015). Similarly, a closed area de-

signed to protect juvenile haddock on the central Scotian Shelf

did not demonstrate its intended benefit (Frank et al., 2000). The

lack of response was attributed to several factors: (i) the low pro-

portion of juveniles protected by the closed area, (ii) the closed

area was not closed to all gear types (fixed gear was permitted),

and (iii) the combined influence of historical over-exploitation

and environmental change on resident haddock (Frank et al.,

2000).

Seasonal and area closures have great potential to be effective

tools in the management of spatial complexity, but, in order to

have broad-scale (i.e. stock-level) impact, these tools must be ap-

plied early, at the appropriate scale, and in a way to effectively re-

duce total fishing pressure (Kritzer and Lui, 2014).

Spatiotemporal closures alone cannot guarantee management

success, especially if spatial population structure is being misin-

terpreted at the scale of assessment (e.g. lumping or splitting of

unique spawning populations; Kerr et al., 2014b). In the case of

northwest Atlantic cod, stock assessment models and broad-scale

management measures (i.e. stock-specific TACs) did not account

for the existing population structure within the Gulf of Maine

stock unit, which likely impeded the potential success of the im-

plemented spatiotemporal closures.

Approach IV: integration of stock composition analysis
in assessment and management
Case study IV: eastern and western Baltic cod
Two genetically distinct cod (G. morhua) populations occur in

the Baltic Sea and are assessed and managed as separate stocks:

eastern Baltic cod (ICES SDs 25–32) and western Baltic cod

(ICES SDs 22-24, Figure 4). Stock mixing has been documented

in the Arkona Basin (ICES SD 24) and has apparently increased

due to increasing abundance of the eastern population in recent

years (Eero et al., 2014). Because of the substantially lower stock

size of western Baltic cod compared to eastern Baltic cod, concern

exists about the potential for local depletion of the western Baltic

cod stock, and it was deemed necessary to incorporate stock mix-

ing dynamics into management decisions (Hüssy et al., 2013).

Figure 4. Eastern Baltic (ICES SDs 25-32) and western Baltic cod
(ICES SDs 22-24) stock areas. The area of significant stock mixing is
located in the Arkona Basin (ICES SD 24).

Figure 3. Closures designed to protect the Gulf of Maine cod stock
(Gadus morhua), including spawning closures within state waters, a
year-round western Gulf of Maine closed area, and rolling spawning
protection closures.
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Otolith shape analysis has been identified as a useful method

in mixed stock analysis of Baltic cod, providing a high degree of

accuracy in the discrimination of fish stocks (Hüssy et al., 2016).

Otolith shape analysis is a phenotypic stock identification tech-

nique, which in this case was validated using genetic markers

(single nucleotide polymorphisms, Hüssy et al., 2013).

Application of this method to archived otoliths has resulted in a

time series of estimated proportions of eastern and western Baltic

cod within the Arkona Basin since 1996 (ICES, 2015a). Hüssy

et al. (2016) documented a temporal trend in the proportion of

eastern Baltic cod in the Arkona Basin with an increase from

�30% before 2005 to >80% in 2011. In 2015, eastern and west-

ern Baltic cod stock assessments incorporated information on the

proportion of eastern fish within the western stock area. Prior to

2015 all fish within the western Baltic geographical area (SDs 22–

24) were attributed to the western Baltic cod stock regardless of

their natal origin (ICES, 2015a). This revision provided a more

realistic view of western Baltic cod stock status, indicating bio-

mass is stable at low abundance (ICES, 2016a).

Lessons learned
Geographic stock boundaries cannot delineate sympatric popula-

tions. In such cases, mixed-stock analysis is a powerful tool that

provides information on the stock composition of current fisher-

ies, and also offers insights on temporal changes in population

proportions in catches and the causes of those changes (Cadrin

et al., 2005). Mixed stock analysis of Baltic cod allowed for pars-

ing of survey and catch data back to the stock of origin. In the ab-

sence of mixed stock analysis, the increase in the Arkona Basin

would be attributed solely to the western stock and the resulting

harvest strategy would be based on a misperception of western

Baltic cod biomass (Hüssy et al., 2016). Parsing of data using im-

proved analytical tools such as otolith shape analysis as validated

through use of genetic markers enabled a more representative as-

sessment of the populations and the ability to more closely track

the magnitude and trends in population dynamics of the

individual stock components (Hüssy et al., 2016). Stock composi-

tion analysis based on age structures (e.g. otoliths) takes advan-

tage of samples that are routinely collected during a survey and

based on a robust statistical design in order to represent age com-

position. However, analysis of otoliths requires increased re-

sources, which should be weighed against the benefits offered for

the given application. As high throughput genetic analysis be-

comes less expensive, this method of stock composition analysis

can be more thoroughly utilized to supplement less costly meth-

ods (e.g. otolith shape analysis), and can be collected regularly in

the same way that traditional catch length or age composition are

sampled.

Approach V: alteration of stock boundaries and the
spatial-scale of assessment
Two case studies, sandeel in the North Sea and redfish in the

Irminger Sea, are highlighted to demonstrate this approach.

These case studies profile species with different life histories (i.e.

sedentary sandeel compared with semi-pelagic redfish) and com-

plexity of population structure (i.e. metapopulation structure in

the case of sandeel and genetically distinct populations for red-

fish). Additionally, different approaches are applied in redefining

stock boundaries from relatively simple (i.e. implementing more

fine-scale management units within the current stock boundaries

for sandeel) to more complex (i.e. overhauling the stock units of

redfish).

Case study Va: sandeel (Ammodytes spp.) in the North Sea
Sandeel (Ammodytes spp.) are a key component of the North Sea

ecosystem serving as a major prey item for many fish, marine

mammal, and seabird species as well as being a target fishery spe-

cies. Local depletions of sandeel populations in the vicinity of

breeding bird colonies have had catastrophic consequences to

seabird reproductive success and brought considerable public and

political attention to the issue of sandeel management

(Frederiksen et al., 2005). Sandeel exhibit a pelagic larval phase

with settlement occurring on suitable sand habitat where they

burrow during daylight periods to avoid predation (Wright et al.,

2000). Post-settlement sandeels are largely sedentary and demon-

strate high site fidelity (Wright et al., 2000), which results in the

formation of local subpopulations in the North Sea due to the

limited exchange of adults between areas. Larval drift models sug-

gest that the North Sea consists of a spatial mosaic of self-

recruiting populations. Additionally, the patchy geographic dis-

tribution and regional growth differences of sandeel suggest that

the unit stock concept does not apply to sandeel in the North Sea

(Christensen et al., 2008).

Sandeels in the North Sea were managed historically as four

stocks [(i): northern North Sea, (ii) southern North Sea, (iii)

Shetland Island, and (iv) Skagerrak–Kattegat area] until 1995

when management units were revised to three units (i.e. the

northern and southern North Sea stocks were combined into a

single stock unit). In 2010, ICES modified the spatial scale of as-

sessment and management from three to seven areas to better re-

flect the sub-population structure, and allow for spatial

management measures that could mitigate potential depletion of

local populations (Figure 5). Of these stock areas, three have ana-

lytical assessments, one is classified as data limited and managed

based on an index of abundance, and the remaining three only

have catch statistics available (ICES, 2015b).

Figure 5. Sandeel (Ammodytes spp.) management areas (1-7) and
spawning habitat (black). Figure modified from ICES (2014).
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Current catch advice for North Sea sandeel stocks is area spe-

cific in order to protect individual units, and these stocks are sub-

ject to annual TAC constraints, ‘in-year’ adjustments to projected

TACs, and area-specific rotational fishery closures. The approach

allows maintaining fishing on the more productive units, while

protecting the smaller units that are more susceptible to over-

harvest (e.g. there is a quota for area 3, while no fishing is allowed

in area 7; ICES, 2016b).

Lessons learned
Spatially explicit management is appropriate and essential for

species which are sessile or semi-sessile. In the case of sandeel, it

was recognized that fisheries targeting specific areas have the abil-

ity to extirpate parts or all of a local population. Due to the

unique dynamics of local sandeel populations and the potential

for local extirpation of spawning populations, there is a necessity

for assessment and management plans to be area specific. The

shift to more spatially explicit assessment and management of

sandeel allowed for varying advice across local populations. By

adjusting the management boundaries to conform to the sub-

stock structure, the potential for overexploitation when units

were lumped, as was historically done for North Sea sandeel, was

reduced. Simultaneously, foregone yield from underexploitation

of more productive units also declined, which demonstrates the

benefit of redefining spatial units as opposed to simply managing

and protecting the weakest stock component.

Case study Vb: redfish (S. mentella) in the Irminger Sea
Population structure of beaked redfish (S. mentella) and the ap-

propriate management units for this resource have been an issue

of controversy over the past two decades (Cadrin et al., 2010).

Prior to 2009, ICES provided advice for redfish fisheries as two

distinct management units: (i) a demersal unit on the continental

shelf, and (ii) a pelagic unit in the Irminger Sea and adjacent

areas. However, concern about the resource grew with the devel-

opment of a pelagic deep-sea fishery in the mid-1990s. At the

time, the relationship between the demersal and shallow-pelagic

resources (the traditional target fisheries for redfish) and the re-

source being targeted by the newly developed pelagic deep sea

fishery was unknown. Furthermore, there was spatial overlap in

the deep-sea and demersal fishery, whereas the shallow pelagic

fishery was more spatially distinct (Cadrin et al., 2010).

In 2009, ICES convened a Study Group on Redfish Stock

Structure in the Irminger Sea and adjacent waters (WKREDS) to

review existing stock structure information, define the most likely

biological stocks, and recommend practical management units

(ICES, 2005, 2009b). All available studies related to stock struc-

ture of redfish in the region were reviewed and synthesized to de-

termine the most parsimonious view of population structure. The

review included multiple approaches to stock identification, such

as examinations of geographic distribution (e.g. fishing grounds

and survey data of early life stages, juveniles, and adults), genetic

variation (e.g. allozymes, mitochondrial DNA, and nuclear DNA

analyses), phenotypic variation (e.g. life history traits, morphol-

ogy, and fatty acid composition characterizations), and connec-

tivity (e.g. larval dispersal, natural tags, and artificial tags; Cadrin

et al., 2010).

Based primarily on genetic information (i.e. microsatellites),

and supported by other information on stock structure,

WKREDS concluded three biological stocks of redfish exist in the

Irminger Sea and adjacent waters (Cadrin et al., 2010):

(i) “Deep Pelagic” stock (NAFO 1-2, ICES 5b, 12, 14 >500 m),

(ii) “Shallow Pelagic” stock (NAFO 1-2, ICES 5b, 12, 14 <500

m), and

(iii) “Icelandic Slope” stock (ICES 5a, 14).

Although the biological stocks of redfish were in part redefined

by depth and habitat, WKREDS recognized that depth-defined

management units would not be practical and instead recom-

mended new spatially-defined management unit boundaries that

were redrawn to minimize mixed-stock catches. The three recom-

mended management units included a (Figure 6; Cadrin et al.,

2010):

Figure 6. a) Redfish (Sebastes mentella) management areas in the Irminger Sea and adjacent waters (1: Southwest Irminger Sea, 2: Northeast
Irminger Sea, 3: Icelandic Slope). b) Diagram of distribution of biological stocks by depth, including shallow pelagic, deep pelagic, and Icelandic
slope as well as their respective stock areas (1-3). Figures modified from ICES, 2009.
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(i) “Deep Pelagic” management unit in the northeast Irminger

Sea (defined by the spatial distribution of the deep, pelagic

fishery),

(ii) “Shallow Pelagic” management unit in NAFO areas 1 and 2,

ICES areas 5b, 12, 14 (outside of the deep, pelagic area), and

(iii) “Icelandic Slope” management unit that is north and east of

the existing ‘redfish line’.

Based on the view of redfish biological stock structure that

emerged from the review and the recommendations of WKREDS,

ICES revised the management units of S. mentella fisheries in the

Irminger Sea and now provides specific advice based on the per-

ception of the status of the three newly defined management units

(Figure 6).

Lessons learned
When biological units overlap with new or developing harvest

stocks and historical data can be parsed to the appropriate unit, a

revision of the existing stock units may be the most appropriate

and practical approach to improve the accuracy of assessment

and effectiveness of management. The definition of management

units usually cannot exactly match biological boundaries, because

the latter are not precisely known and the spatial resolution of

fishery management (e.g. reporting of fishing effort, monitoring

of catch, and enforcement of regulations) is limited. There are

also challenges to maintain pragmatic management areas, when

biology brings new concepts into the separation of stock units

(i.e. separation by depth).

Because ICES advice is now provided for three geographically

defined management units for redfish, the more vulnerable shal-

low pelagic stock can be directly protected from overharvest with-

out foregone yield from the other units (Cadrin et al., 2010).

The potential for improved advice for the three stocks illustrates

the importance of stock identification for fisheries management.

However, the situation for redfish was fairly unique in that harvest

stocks aligned with population units and there was limited mixed

stock catches, which allowed redefinition of stock units that over-

lapped with the developing fishery.

Best practices in integration of biological
population structure into assessment and
management
Below we outline a process for improving assessment and man-

agement in situations where there is a mismatch between the scale

of biological population structure and spatially-defined stock

units. This stepwise process is intended to reflect best practices

and includes:

(i) Holistic review of available stock identity information by a

group of experts,

(ii) Identification of alternative assessment and management

options that consider biological structure,

(iii) Consideration of the practical limitations of alternative

approaches, and

(iv) Quantitative evaluation of outcomes of alternative assess-

ment and management options relative to biological, eco-

nomic, and social objectives through MSE.

Review of stock identity information
In recent years there has been an increase in the application of a

diversity of approaches to identify and delineate biological struc-

ture of fishery resources. In some cases, single methods are ap-

plied to resolve issues of stock structure (i.e. genetic markers),

but increasingly multiple approaches (e.g. otolith chemistry and

genetic markers; Tanner et al., 2016) are applied to identify and

delineate biological structure (Cadrin et al., 2014b; Zemeckis

et al., 2014b). Because population structure is influenced by pro-

cesses that vary across ecological and evolutionary time scales and

are characterized by both genetic and phenotypic variability, in-

formation from multiple stock identification approaches is rec-

ommended as the most robust approach to draw conclusions

regarding stock identity (Abaunza et al., 2008; Cadrin et al.,

2014b). The application of more than one stock identification

method increases the likelihood of correctly identifying and de-

scribing population structure (Cadrin and Secor, 2009; Cadrin

et al., 2014b).

Cadrin et al. (2014b) outlined a five step process for interdisci-

plinary evaluation of population structure and recommended

that a summary statement be developed after each sequential

step:

(i) Define the current spatial assessment and management units

and their scientific or practical justification.

(ii) Identify all a priori hypotheses about population structure,

including the current management units.

(iii) Conduct a comprehensive review of available information

on the population structure of the fishery resource and

summarize conclusions by discipline (e.g. geographic varia-

tion in genetic composition, phenotypic traits, movement

patterns, otolith microchemistry, and parasitic infection).

(iv) Synthesize information across disciplines through an inter-

disciplinary evaluation with the goal of identifying congru-

ent results and reconciling apparent differences.

(v) Test whether information supports or rejects a priori hy-

potheses of population structure and draw a final conclu-

sion on population structure that is consistent with the best

available science.

The ICES Stock Identification Methods Working Group is an ex-

ample of an expert group that reviews questions of stock structure

specifically for ICES stocks. A key aspect of this group is that the

members include experts across the range of disciplines used to

identify biological units in space and time, including genetics, life-

history, tagging, otolith chemistry, morphometrics, parasites, and

statistics. Through its reviews of the best available science and

resultant recommendations (e.g. ICES, 2015c), the group strives

to play a significant role in developing improved approaches to

define stock units and incorporating explicit knowledge of popu-

lation structure into assessment and management.

Identifying alternative assessment and management
options
A range of approaches are available to improve assessment and

management in situations where a mismatch in scale occurs be-

tween biological population structure and management units in-

cluding: (i) changing the scale of the stock assessment or parsing

“mixed” data prior to use in the assessment, (ii) changing the
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scale of management, or (iii) changing both the scale of assess-

ment and management. Ideally, the scale of assessment models

should coincide with the scale of management; however, this is

not always feasible. The degree of spatial isolation or overlap be-

tween populations along with the stock composition of catches

are important determinants of the appropriate strategy.

When mixing occurs among population components, naı̈ve

stock assessment techniques can give an inaccurate perception of

the fishery resource and lead to overexploitation of unique

spawning components, and loss of yield or other fishing opportu-

nities. Development of assessment models that align with our un-

derstanding of biological structure can provide a more realistic

assessment of population status and trends (Kerr and Goethel,

2014). Spatially-explicit models can account for connectivity

within and across stock boundaries, but these models can be data

intensive, add increased costs to monitoring (e.g. collection of

tagging data for tag-integrated models), and require extensive

knowledge of population structure in order to provide unbiased

estimates (Porch et al., 1998, 2001; Goethel et al., 2015a,b).

The application of spatially explicit stock assessment models is

quite limited (e.g. management applications are only common in

a handful of tropical tunas) and, to our knowledge, have not been

used as the basis for management advice in any North Atlantic

fisheries to date (see Goethel et al., 2015a,b for an example appli-

cation to yellowtail flounder off of New England and Aires-da

Silva et al., 2009 for an example application to blue shark in the

North Atlantic).

Mixed stock composition analysis (e.g. the use of otolith shape

or structure to assign survey and catch data to its natal origin) is

a solution to mixed stock fisheries that does not require explicitly

accounting for movement dynamics in the stock assessment. By

parsing data back to the stock of origin, assessment inputs are ad-

justed to strictly account for removals from the natal population

(e.g. eastern and western Baltic cod, case study IV), which often

provides a more accurate view of stock biomass than assessments

based simply on total removals within a stock area. In some cases,

limitations in data and resources and the discrimination capacity

of stock identification techniques may prohibit partitioning of

data back to the natal population (e.g. herring west of the British

Isles; ICES, 2015b). In these cases, it may still be possible to use

abundance index time series to monitor individual population

trajectories if the survey is specifically designed to sample the

population component (e.g. surveys conducted on the spawning

grounds).

Management can construct harvest rules to operate at any

given spatial and temporal scale; however, fine-scale spatial man-

agement is simpler for species with local distributions or that ex-

hibit limited migration (Kritzer and Liu, 2014). Spatially explicit

management tools (e.g. closures of spawning habitat) can be ef-

fective even if the data do not support development of sub-stock

or spawning component quotas (Kritzer and Liu, 2014). The ex-

ample of Gulf of Maine Atlantic cod (case study III) demonstrates

that this approach alone is not always sufficient to prevent de-

clines in biomass, but it also illustrates the importance of a holis-

tic analysis of population structure (i.e., accounting for both

broad-scale and fine-scale dynamics). Without accounting for

spatial population structure in the assessment and management

of the entire stock complex, sub-stock closures alone cannot suffi-

ciently limit fishing effort or rebuild stock biomass. Likewise

“weakest link” management (e.g. case study II, North Sea herring)

may protect minority spawning components, but without an

assessment of the size of the component, overexploitation or fore-

gone yield can result. When uncertainty in stock delineation ex-

ists and is not reconciled, imposing precautionary buffers within

catch limits may be required to further guard against adverse ef-

fects from spatial mismatches (Kritzer and Liu, 2014).

In some cases, both the scale of assessment and management

can be re-defined to reflect biological population structure.

In scenarios where biological units are effectively fished indepen-

dently (i.e. harvest stocks) and historical data can be parsed to

the appropriate unit, a revision of the existing stock boundaries

may be the most appropriate and practical approach (e.g. redfish,

case study Vb). However, many populations or fisheries may be

too complex to be spatially delineated at the population-scale

(e.g. fisheries targeting mixed stocks). In these instances, moni-

toring of the spatial and temporal population structure is recom-

mended (Smedbol and Stephenson, 2001).

Practical considerations
Practical limits to the scale of assessment and management

should be considered in scoping alternative approaches to address

biological structure of fishery resources. Before incorporating ad-

ditional complexity into the fisheries management system, the

practical costs and anticipated benefits must be evaluated. For in-

stance, does incorporating additional layers of complexity reduce

uncertainty and increase sustainability (Cochrane, 1999)?

Inclusion of stakeholders input at this stage can be extremely use-

ful in identifying practical management solutions based on their

knowledge of the fishery and the needs of management and in-

dustry (Trenkel et al., 2015).

Limitations to the scale of stock assessment are typically deter-

mined by the spatiotemporal scale at which data are collected.

However, there are also fundamental limitations to the dynamics

that can be represented by models (e.g. transitory dynamics may

not be predictable). Thus, the answer to the question of what

scale of biocomplexity should be preserved depends on character-

istics of the species (including the spatial and temporal aspects of

spawning components, populations, and metapopulations), con-

sideration of the scale at which we can practically assess and man-

age the species, and the socioeconomic considerations identified

by various stakeholders (McBride, 2014). Ultimately, MSE can be

a valuable tool to inform the optimal scale of biocomplexity pres-

ervation, while also weighing social and economic goals.

Management of migratory populations that cross or straddle

several management units adds another dimension of complexity

to resolving the appropriate scale of fisheries management

(Kritzer and Liu, 2014). Monitoring migratory species is a diffi-

cult, and oftentimes costly, task that may require internationally

coordinated efforts, while the identification of population struc-

ture for these species is often at the limit of fisheries science. Due

to uncertainty about the structure and movement of pelagic fish,

such as blue whiting Micromesistius poutassou or mackerel

Scomber scombrus, changes in distribution patterns are sometimes

seen by fishermen and national authorities as new stock compo-

nents to be exploited without reference to the nature of the stock

complexity in the region (Cunningham et al., 2007; Nye et al.,

2009; Pointin and Payne, 2014).

Changes in fish distributions due to climate change can pose

problems for designing short and long-term management frame-

works and sampling programs (Nye et al., 2009; Pinsky et al.,

2013; Kleisner et al., 2016), because spatial habitat utilization may
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eventually extend outside the jurisdiction of the managing au-

thority (e.g., northeast Atlantic mackerel; ICES, 2011). The po-

tential for concurrent changes in the distribution and quality of

habitats due to directional environmental changes can also influ-

ence fish distributions and potentially impact population struc-

ture (Shackell et al., 2014; Kritzer et al., 2016). A shift in

population distribution may also result in a change in fishery dy-

namics (e.g. components of the stock may be harvested by new or

different fishing fleets), complicating the stock assessment along

with the determination of management targets. Furthermore, the

environment fish encounter in new areas may affect life-history

parameters, resulting in different population dynamics all

together.

Quantitative evaluation of alternative assessment and
management approaches
Developing spatially-explicit operating models that incorporate

population structure and movement can provide a basis for de-

termining how ignoring spatial structure may detrimentally im-

pact the entire resource and fishery (e.g. by comparing

assessment and management frameworks that utilize different as-

sumptions about population structure and mixing; Kerr and

Goethel, 2014; Goethel et al., 2016). Thus, the output provided by

simulation models can be an invaluable tool for management

bodies, providing additional information regarding the short-

term and long-term consequences of their choices on the re-

source. Key steps in the development of MSE for evaluating the

implications of mismatches between biological and stock struc-

ture include (Kerr and Goethel, 2014):

(i) Development of operating models that represent the leading

hypotheses of population structure of the fishery resource

(ii) Simulation of alternative management strategies

(a) Generation of data from operating models and applica-

tion of stock assessment methods

(b) Application of alternate management strategies that in-

tegrate information on population structure

(c) Projection of the operating model given the advice

from management strategies on allowable catch

(d) Repeat steps (i)–(iii) for a fixed projection period

(iii) Evaluation of performance of alternative management strat-

egies against performance criteria (including biological, eco-

nomic, and social objectives).

MSE is a powerful tool for developing fishery policy and strategic

advice, but can be time consuming to develop and validate

(Bunnefeld et al., 2011). Ideally, all decisions would be tested us-

ing MSE to determine the best alternative. However, most man-

agement decisions must be made on short-term time horizons,

especially in cases of conserving minority components of a stock

complex. Therefore, interim measures (e.g. localized spatial man-

agement) may be required when MSE cannot be developed in a

timely fashion.

Conclusions: synthesis of lessons learned
Our synthesis of the six case studies from the North Atlantic indi-

cates that management bodies are becoming more aware of the

importance of spatial structure and connectivity, and that

proactive solutions are critical for the preservation of the natural

stability and resilience of fish species. Ultimately, when spa-

tial structure is identified, stock identification methods should

be applied to help understand the existing biocomplexity (Cadrin

et al., 2014b). Management should take a proactive role in syn-

thesizing the best available stock identification information and

apply this knowledge to determine potential mismatches between

biological and management structure. The degree of spatial isola-

tion or overlap between populations and harvest stocks are im-

portant determinants of the appropriate strategy. Ideally,

alternative approaches to resolve this mismatch should be identi-

fied and evaluated through MSE with biological, economic, and

social trade-offs examined with stakeholders.

The prevalence of incongruities between biological and manage-

ment units can be attributed in part to strong institutional inertia

to maintain status quo management. However, given the impor-

tance of preserving biocomplexity, status quo management can

range from sub-optimal to detrimental with respect to the impact

on the resource. In the past, legal mandate or political pressure was

often required to adjust stock boundaries. Our review indicates

that recognition of the need for proactive rather than reactive

management is becoming more widespread, especially when it in-

volves the protection of unique spawning populations. However,

regardless of the amount of monitoring that is undertaken, it is

not possible to develop perfect stock boundaries, especially given

the impacts of climate change on species distribution.

In the marine realm, most species exhibit some level of com-

plex spatial structure, but not all aspects of population structure

are necessary to incorporate into assessment and management

(e.g. movement among stock units did not greatly alter percep-

tion of stock status for a metapopulation of yellowtail flounder;

Goethel et al., 2015a). However, our review suggests that in order

to maintain sustainable fisheries, it is necessary for management

agencies to be able to rapidly develop and apply adaptive spatial

management, which can account for population structure to the

extent practicable. Although impossible to develop generalized

and prescriptive adaptive management guidelines, the critical ele-

ment is for management bodies to remain flexible in order to

protect biocomplexity (e.g. spawning components) when new in-

formation becomes available, and, ultimately, to not be limited

by the comparatively slow refinement of stock boundaries and

quantitative assessment techniques.
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