

Combining Fishermen's Knowledge to Locate, Evaluate, and Predict Gray Meat Outbreaks (SK 15-17)

May 4th 2017

NA15NMF4270260

D. Georgiana, S. Inglis, **Gavin Fay**, K. St. Martin, M-Y. Lee, K. Stokesbury

J. Rossellon-Sruker

gfay@umassd.edu www.thefaylab.com @gavin_fay

"These aren't the scallops you're looking for"

May the 4th be with you

NA15NMF4270260

D. Georgiana, S. Inglis, **Gavin Fay**, K. St. Martin, M-Y. Lee, K. Stokesbury

gfay@umassd.edu www.thefaylab.com

Objectives

- 1. Expand scallop captain interviews on gray meat knowledge and locations.
- 2. Develop a model to predict areas susceptive to gray meat outbreaks and environment attributes of these locations.
- 3. Apply results of predictive model to an economic model to assess effect of gray meat infestations on optimal periods for rotational scallop management.
- 4. Conduct laboratory experiments to test the hypotheses that gray meat tissue can be a vector for further infection.

Gray meat scallops:

- have small, darkened and stringy adductor muscle.
- are reported along the eastern seaboard.
- may be increasing in frequency (Inglis et al., 2016).
- are associated with reduced harvestable biomass & mass mortality.

Gray meat predictive modeling

GOAL:

- 'Simple' spatial model of gray meat prevalence
- Prevalence / probability a function of:
 - environmental covariates
 - Fishing history
 - Scallop density
- Fit model to data from:
 - Presence/Absence info from surveys/VTRs/observers
 - Qualitative information from interviews

- Species distribution modeling
- Make inference about spatial distribution based on observations

Modeling overview

'Environmental' covariates

- Lots of variables associated with trips where gray meats were and were not observed.
- e.g.
 - Temperature
 - Depth
 - Scallop Density
 - Fishing history
 - etc. etc.
- Goal: evaluate relative importance of these for determining gray meat intensity and distribution.

Preliminary results: auction data only

Logistic regression using Coonamessett Farm Foundation survey data 2013-2015

(Rossellon-Druker)

Gray meats are associated with adverse environmental conditions

Probability of gray meat presence increased with:

- stable and coarser sediments,
- low chlorophyll levels,
- high temperatures, and
- low scallop densities.

Coefficients for best model

Logistic regression using Coonamessett Farm Foundation survey data 2013-2015

(Rossellon-Druker)

Gray meats are associated with adverse environmental conditions

Probability of gray meat presence increased with:

- stable and coarser sediments,
- low chlorophyll levels,
- high temperatures, and
- low scallop densities.

Summary

 Results suggest gray meat scallops are related with suboptimal habitats.
Stressed out scallops may be less adept to fight the parasite.

Next Steps:

- Simultaneous fitting of geospatial models to all data sets.
- Further work will use laboratory experiment results and link outputs to economic models.