
Overview of Atlantic Cod Research Track Stock Assessment Process

Lisa Kerr (Chair-Cod RTWG)

NEFMC Council Meeting

June 29, 2022

RESEARCH TRACK STOCK ASSESSMENTS

RESEARCH TOPIC & ASSESSMENT DEVELOPMENT

STEERING COMMITTEE (3+ years)

WORKING GROUP (1–2 years)

PEER REVIEW (3-5 day meeting)

INFORM MANAGEMENT

The Northeast Region Coordinating Council sets a 5-year assessment schedule based on input from fishery managers, scientists and stakeholders. A steering committee is formed to compile fisheries data, provide guidance, and conduct research. The working group conducts the topic-based research or develops the stock-specific assessment based on research and guidance provided by the steering committee.

External experts review the assessment and make recommendations for future research. The public is invited to participate. Outcomes help shape and plan future management track assessments. Results may also directly inform management actions.

Working Group Members

Lisa Kerr (GMRI, Chair)

Charles Perretti (NEFSC, GOM cod lead analyst)

Katherine Sosebee (NEFSC, GB cod lead analyst)

Scott Large (NEFSC)

Jamie Cournane (NEFMC)

Kathy Cooper-MacDonald (DFO)

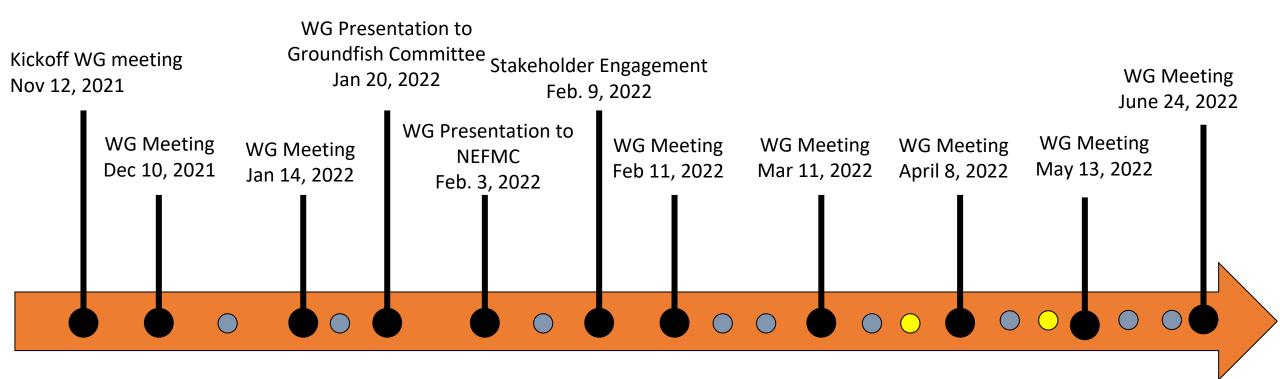
Steve Cadrin (SMAST)

Alex Hansell (NEFSC)

Rich McBride (NEFSC)

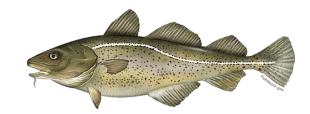
Irene Andrushchenko (Canada DFO)

Micah Dean (MDMF)


+ many more participants

Working Group Participants

- Survey leads
- Graduate students and postdocs
- Industry representatives
- NGO representatives


+ many more participants

Atlantic Cod Research Track Timeline

Upcoming WG Meetings

- ToR 1 Subgroup meeting June 29th
- Full WG meeting July 29th
- Full WG meeting August 12th

- = ToR 1 subgroup meeting
- = ToR 3 subgroup meeting

How to Participate

Meetings are open and info is posted here: https://www.fisheries.noaa.gov/new-england-mid-atlantic/population-assessments/research-track-stock-assessments

Feel free to reach out with questions: lkerr@gmri.org

Search NOAA Fisheries

About Us

Q

Find A Species

Fishing & Seafood

rotecting Marine Lif

nvironment

ions R

esources & Services

EVENTS

Research Track Working Group: 2023 Improving Assessments for Atlantic Cod

Research Track: 2023 Improving Assessments for Atlantic Cod

Meeting | New England/Mid-Atlantic

Event Info

Date

November 12, 2021 - August 24, 2022

Key Resources

- Generic Research Track Terms of Reference (pdf. 2pgs)
- May 13, 2022 Meeting Agenda (pdf, 1 pg)
- April 8, 2022 Meeting Agenda (pdf, 1pg)
- March 11, 2022 Agenda (pdf, 1pg)
- Jan 14, 2022 Meeting 3 Agenda (pdf, 1pg)
- > Nov 12, 2021 Meeting 1 Agenda (pdf, 1pg)

About

This research track will address Atlantic Cod. <u>Research track assessments</u> evaluate new datasets that can either inform or be used in new or existing stock assessment models. Our goal is to develop an improved stock assessment for Atlantic cod that can be used for future management track assessments.

Atlantic cod

Summary of Progress on Terms of Reference

Larger-scale issues and recommendations that influence how we approach other ToRs	ToR 9. Consider new information on stock structure in defining the appropriate scale of stock assessment		
	ToR 7. Review, evaluate, and report on the status of research recommendations		
We appread to the forte	ToR 1. Identify relevant ecosystem and climate influences of the stock		
	ToR 3. Present the survey data used in the assessment		
Data work	ToR 2. Estimate catch from all sources including landings and discards		
Assessment work	ToR 4. Use appropriate assessment approach to estimate annufishing mortality, recruitment and stock biomass		
	ToR 8. Develop a backup assessment approach		
Biological reference points and	ToR 5. Update or redefine status determination criteria		
projections	ToR 6. Define appropriate methods for producing projections		

ToR 9. Consider new information on stock structure in defining the appropriate scale of stock assessment

Science

NOAA Technical Memorandum NMFS-NE-XXX

An Interdisciplinary Review of Atlantic Cod (*Gadus morhua*) Stock Structure in the Western North Atlantic Ocean

Richard S McBride¹ and R Kent Smedbol² (Editors)

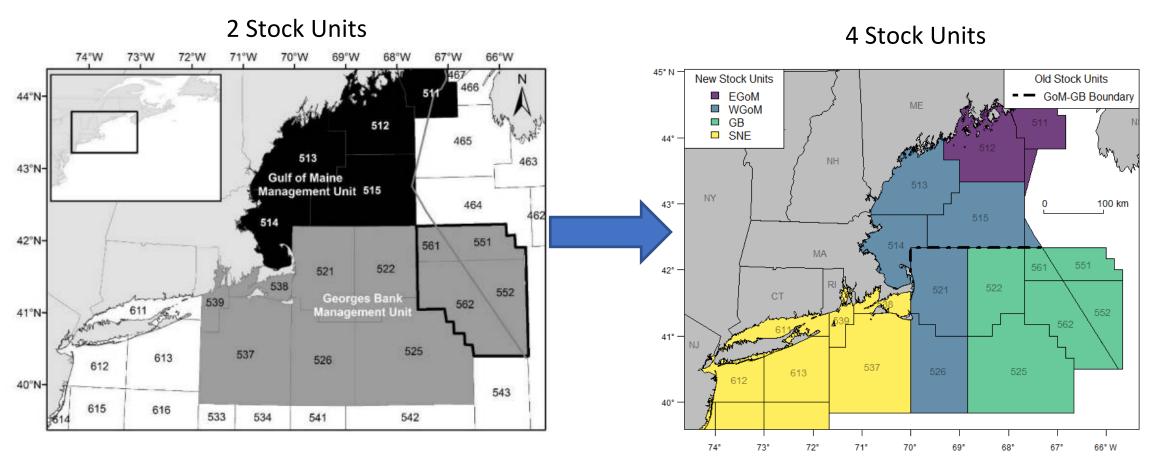
National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543

Fisheries and Oceans Canada, Government of Canada

US DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Northeast Fisheries Science Center
Woods Hole, Massachusetts
Month Year

Stakeholder Workshops

2021 Atlantic Cod Stock Structure Workshops


In 2020, a report by the Atlantic Cod Stock Structure Working Group (ACSSWG) concluded that the population structure of Atlantic Cod in New England waters consists of five distinct biological stocks, instead of the two that are currently managed. This conclusion requires a re-thinking of the current science and management approaches to the fishery. (Download a draft summary of the ACSSWG's peer-reviewed conclusions, here.)

These 2021 Atlantic Cod Stock Structure Workshops, supported by the New England Fishery Management Council (NEFMC), NOAA's Northeast Fisheries Science Center (NEFSC), and NH Sea Grant, present a two-pronged approach developed to incorporate new stock definitions into existing science and management structures. Workshops will focus on (a) Science/Assessment Pr

spects and (b) Management. Each

management structures. Workshops will focus on (a) Science/Assessment Prospects and (b) Management. Each workshop will feature presentations by technical experts followed by discussions open to the public (outlined below) to ensure complete information is available to best inform the cod stock assessment process.

ToR 9: Summary of Progress: WG Recommendations on Scale of Stock Assessment

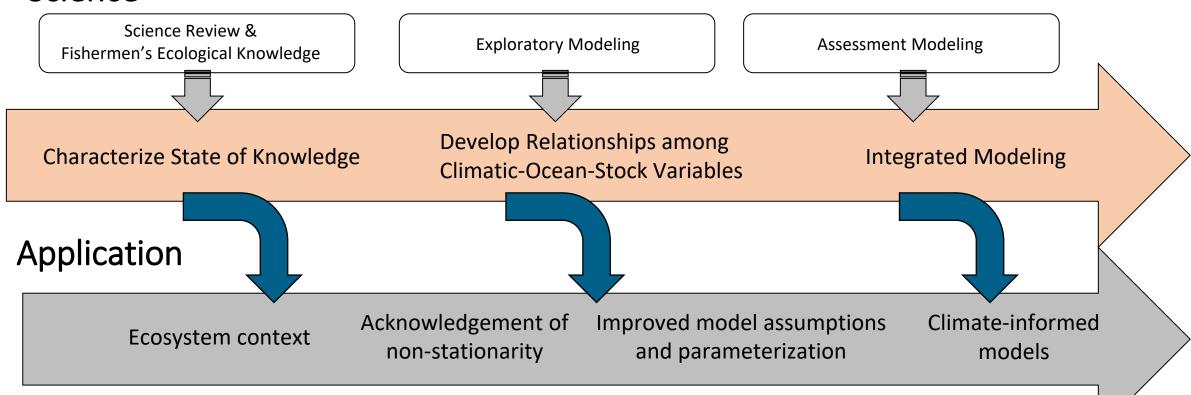
Improved alignment between the scale of cod stock assessment and biological stock structure.

ToR 7: Research Recommendations

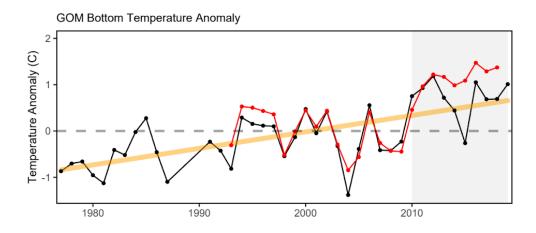
ToR 7: Review, evaluate, and report on the status of research recommendations from the last assessment peer review, including recommendations provided by the prior assessment working group, peer review panel, and SSC.

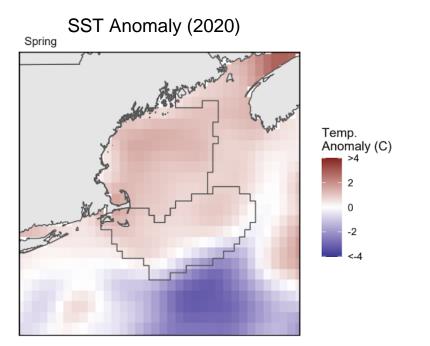
Documents Reviewed to Date:

- 2021 Management Track Peer Review Panel Report
- NEFSC 2021 Management Track Assessment Reports
- SSC report 2021
- Summary of May 20, 2021 Assessment Oversight Panel Meeting


Atlantic Co	d Research Recommendations			
Stock	Research Recommendations	Relevant to ToR	Source	Response from WG
Gulf of Maine Cod	Survey Indices: Use of the Longline survey, and other surveys, in the assessment	ToR 2	2021 Management Track Peer Review Panel Report	
Gulf of Maine Cod	Assumptions of Assessment Model: Defining fishery selectivity by individual fleets (e.g. recreational and commercial fleets) or allowing for an annual selectivity curve that accounts for the changing patterns as the catch composition shifts from commercial to recreational and recreational discards over time.	ToR 4	2021 Management Track Peer Review Panel Report	
Gulf of Maine Cod	Catch Information: Impact of underestimation of age-2 catch, particularly with regards to the recreational fishery or bycatch in lobster and other fisheries.	ToR 2	2021 Management Track Peer Review Panel Report	
Gulf of Maine Cod	Assessment Model: Consider whether it is appropriate to continue to both the M = 0.2 and M-ramp models (perhaps consider the potential for weighting the two-models like in an ensemble approach).	ToR 4	2021 Management Track Peer Review Panel Report	
Gulf of Maine Cod	Biological Reference Points: Consider ways to adjust BRPs to deal with changes in M from 0.2 (e.g., M-ramp)	ToR 5	2021 Management Track Peer Review Panel Report	
Gulf of Maine Cod	Catch information: Evaluate the lobster fishery bycatch of cod	ToR 2	2021 Management Track Peer Review Panel Report	
	Projections: Evaluate the appropriate recruitment time series, or		2021 Management	

ToR 1: Ecosystem and climate influences


ToR 1: Identify relevant ecosystem and climate influences on the stock.


- Characterize the uncertainty in the relevant sources of data and their link to stock dynamics.
- Consider findings, as appropriate, in addressing other TORs.
- Report how the findings were considered under impacted TORs.

Science

Atlantic Cod Ecosystem and Climate Profile

Population Dynamic	Most frequent indicators from lit	Linkage to cod	Relevance to Management	
Distribution and Habitat Use	Temperature	 Changes in Spawning location and time (bottom temp) Northward shift observed in GB and southward shift observed in GOM (AMO) 	Could inform catchability as distributions	
	Depth Juveniles inhabit deeper waters Significant driver in other studies Overwinter in depths >150m		change	
	Bottom Type	 Associated with hard-bottom and coarse grain sediments, boulder reefs 		
Recruitment	Temperature (bottom temp)	 Changes in spawning location and timing Correlation between colder waters and higher recruitment 	Could help improve recruitment	
	Downwelling winds/ Gulf Stream Index	Related to increased retention of larvae	estimates	
Growth and Maturity	Temperature	Affects growth rates directly and indirectly (food availability) Greatest growth rates observed between 10-15 C Age at maturity decreases with increasing temperatures (bottom temp)	Could improve maturity assumptions, impact on time-varying growth	
Natural Mortality	Temperature	 Cold temperatures prolong time in developmental stages, increasing predation (SST) Eggs/larvae have a limit of 12 C (SST) Decreases in prey availability & increased metabolic costs under warmer temps leads to starvation (bottom temp) Warmer temps could lead to smaller sizes at maturity, which could increase susceptibility to predation (bottom temp) 	Could help improve natural mortality estimates	
	Predation	Direct effect from seals & other fish		

Fishermen's Ecological Knowledge

February 9th, 2022

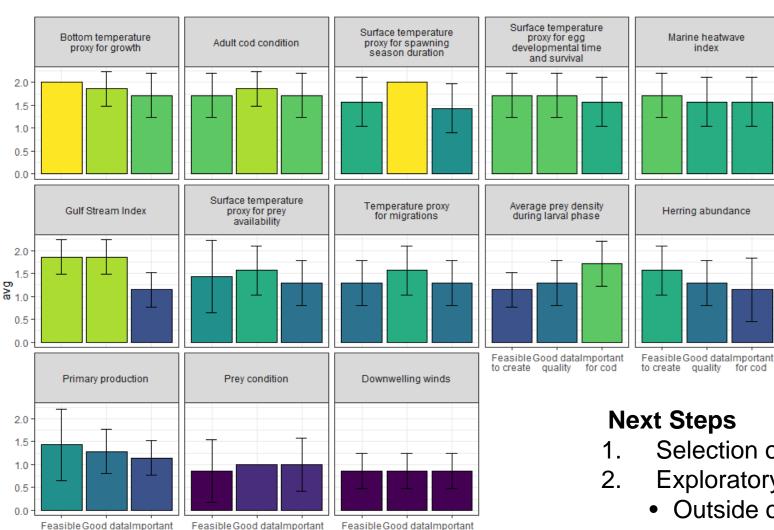
Objective: Solicit feedback from stakeholders to identify key ecosystem and climate influences on cod stock dynamics and impacts on fleet response to changing conditions.

Surveys	Survey - cod distribution location & timing mismatch
Environmental Changes	 Stronger tides in recent years Haddock population size influence on cod Changing temperature and stock biomass expected to impact code response to ecosystem stressors Slime in water where cod were found and decreased catch when slime was present also associated with high salp abundance Increased worms in cod, haddock, gray sole & other species - linked to gray seals?
Temperature	 Association between temperature and biomass of cod resulting effects such as effect on distribution shift (location & arrival/departure times) Cod don't emigrate from area unless winter is "very warm" Increases in temperature associated with changes in predator/prey composition
Predator/Prey	 Noticed increased gray seal abundance in recent decades Spiny dogfish and black sea bass also a concern as they move northward and "eat everything" Potential bias in surveys that capture spiny dogfish and they are prevalent at night "Ecosystem shift" due to notable decreased in sand lance, a prey species for cod
Regulatory Impacts	Shifts in fishing location might be a response to changing target species rather than a response to environmental changes

Indicator Selection

to create quality for cod

to create quality


for cod

to create

quality

Metric

for cod

Ongoing classification of indicators:

- Feasibility to create
- Quality of data
- Importance for cod

Selection of candidate indicators

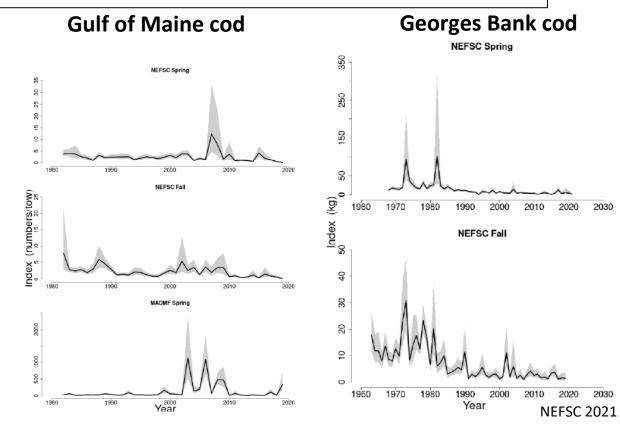
avg

1.8 1.5 1.2

- Exploratory modeling
 - Outside of the assessment model
 - Within an assessment model (e.g. WHAM)

ToR 3: Present the survey data used in the assessment (e.g., indices of relative or absolute abundance, recruitment, state surveys, age-length data, application of catchability and calibration studies, etc.) and provide a rationale for which data are used.

- Describe the spatial and temporal distribution of the data.
- Characterize the uncertainty in these sources of data.


Previous Assessments (2021):

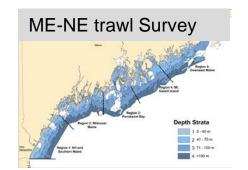
Gulf of Maine:

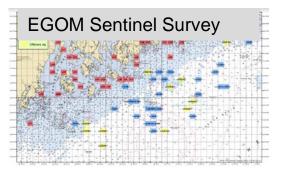
- NMFS spring and fall bottom trawl surveys
- Massachusetts Division of Marine Fisheries (MADMF) spring bottom trawl survey.

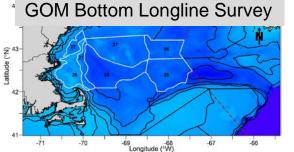
Georges Bank:

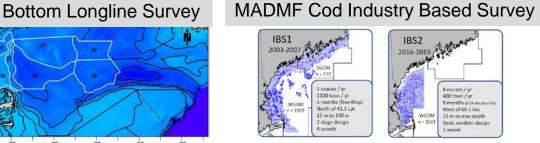
NMFS spring and fall bottom trawl surveys

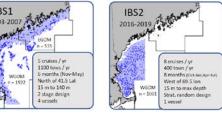
- Review of available surveys relevant to 4 stocks.
- Assessment of the utility of surveys.
- Identification of additional information needs.
- Data template created and shared out with survey leads.
- Application of NEFSC trawl survey to 4 stock areas.
 - Allocation of strata to stock area
 - Application of calibration studies
- Development of fishery dependent catch rate information.

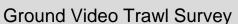

Data Availability:

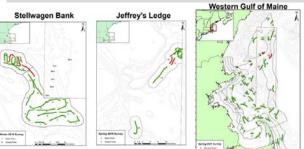

 WG synthesized a database of data available to support assessments that increase the alignment between the scale of stock assessment and biological stock structure of cod.


Biological Units			Indices of	abundance
	Data type	Data source	Ages sampled	Timespan
EGoM	Fishery independent	ME/NH trawl survey	Primarily ages 0 & 1	2000+
	Fishery independent	NMFS trawl survey	Ages 0-9+	1963+
	Fishery independent	Eastern Gulf of Maine Sentinel Survey	Primarily ages 1 - 4	2012+
Fishery dependent		Commerical LPUE	Primarily ages 2-7	1996+ (prior to 1996 available)
WGoM (spring/winter)	Fishery independent	MADMF trawl survey	Primarily age 0	1978+
	Fishery independent	NMFS trawl survey	Ages 0-9+	1963+
	Fishery independent	ME/NH trawl survey	Primarily ages 0 & 1	2000+
	Fishery independent	NMFS Northern Shrimp Trawl Survey	Ages 0 - 9+	1984+
	Fishery independent	NMFS Bottom Longline Survey	Ages 1 - 9+	2014+
	Fishery independent	MADMF Cod Industry Based Survey	Ages 0 - 9+	2003-2007, 2016- 2019
	Fishery dependent	Commerical Study fleet/Observer CPUE	Primarily ages 2-9	2010+
	Fishery dependent	Commercial LPUE	Primarily ages 2-9	1996+
	Fishery dependent	Open cod end survey	Ages 0+	2016-2022
	Fishery	Spot. 30d ond survey	7.900 01	20.0 2022


WG reviewed available surveys:

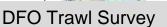

- Maine-New Hampshire Inshore Trawl Survey: R. Peters (Maine DMR)
- Eastern Gulf of Maine Sentinel Survey: R. Linner (UMaine) 2.
- Cooperative GoM Bottom Longline survey: D. McElroy/J. Nieland (NOAA Cooperative Research Branch)
- Rhode Island Coastal Trawl Survey: S. Olszewski/C. Parkins (RI DEM)
- Groundfish video trawl survey: K. Stokesbury/N. Calabrese (SMAST) 5.
- MADMF Cod Industry Based Survey: M. Dean (MADMF) 6.
- MADMF trawl survey: M. Dean (MADMF) 7.
- Northern Shrimp Survey: K. Sosebee (NEFSC)
- University of Rhode Island GSO Fish Trawl Survey: J. Collie (URI) 9.
- DFO trawl survey: I. Andrushchenko/R. Martin (DFO)
- NEFSC bottom trawl survey: C. Perretti (NEFSC) 11.

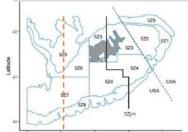




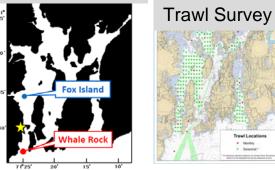


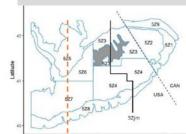
RI Coastal




Northern

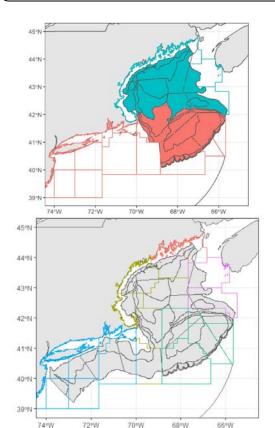
Shrimp Survey



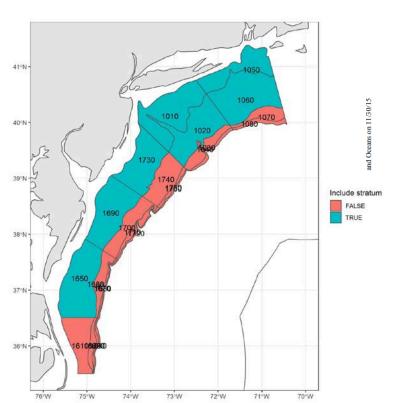


URI Trawl Survey

Getting to model-ready data inputs:


Assignment of fishery independent data to stock area

- MADMF, ME-NH, DFO and NEFSC (largest undertaking)
- Development of new age-length keys
- ME-NH, Cod IBS survey, Bottom long-line survey, Shrimp survey
 Application of Survey calibrations
- Application of revised Bigelow to Albatross calibrations, but also leaving the option to explore splitting to time series


ToR 3. Survey data

NEFSC Trawl Survey

Revised Strata Assignment

Southern New England strata

Revised Bigelow:Albatross Calibrations

A comparison of hierarchical models for relative catch efficiency based on paired-gear data for US Northwest Atlantic fish stocks

Timothy J. Miller

Abstract: Selectivity and catch comparison studies are important for surveys that use two or more gears to collect relative abundance information. Prevailing model-based analytical methods for studies using a paired-gear design assume a binomial model for the data from each pair of gear sets. Important generalizations include nonparametric smooth size effects and normal random pair and size effects, but current methods for fitting models that account for random smooth size effects are restrictive, and observations within pairs may exhibit extra-binomial variation. I propose a hierarchical model that accounts for random smooth size effects among pairs and extra-binomial variation within pairs with a conditional beta-binomial distribution. I compared relative performance of models with different conditional distribution and random effects assumptions fit to data on its species from an experiment carried out in the IIS Northwest Atlantic Gean commaring a new and a retirior vessel. For more

Getting to model ready data inputs:

Survey	Survey Index Metadata	Survey Data	Bio Data	Index	Length Frequency	Numbers at Age
Cooperative GoM Bottom Longline survey	Х	X	Х	X	Х	X
Rhode Island Coastal Trawl Survey	X	X	X	In progress	In progress	In progress
University of Rhode Island Fish Trawl Survey	Х	Х	NA	Х	NA	No age data, aggregate indices developed, no NAA
Maine-New Hampshire Inshore Trawl Survey	Х	X	Х	X	X	X
Eastern Gulf of Maine Sentinel Survey	X	X	X	X	Х	In progress
Groundfish video trawl survey	Х	Х	Х	Х	Х	No age data, aggregate indices developed, no NAA
MADMF Cod Industry Based Survey	Х	Х	Х	Х	Х	X
MADMF trawl survey	Х	Х	Х	Х	X	X
Northern Shrimp Survey	In progress	In progress	In progress	In progress	In progress	No age data-NAA to be calculated using NEFSC ALK with IBS growth model to adjust due to summer timing of survey.
DFO trawl survey	Х	Х	Х	Х	Х	X
NEFSC	Х	X	Х	X	X	X

ToR 2/3: Fishery Dependent CPUE

The WG has received updates on ongoing work by the Groundfish CPUE Project (SMAST- L. McGinnis, K. Hankowsky, M. Grezlik, G. Fay, S. Cadrin & A. Hansell)

- Exploration of fishery data to evaluate cod catch
- Develop standardized indices of abundance for each stock area
- Exploration of species co-occurrence patterns
- Relative catch efficiency of survey and fishery

Next Steps

- Continue to get all indices compiled and model ready.
- Presentation on Atlantic Cod Research Track to the TRAC (July 12).
- Next full working group meeting: July 29, 2022.
- Shifting focus to ToR 2: Fishery data.