Evaluating the Impact of
 Inaccurate Catch Information on Groundfish Management

Lisa Kerr and Ashley Weston
Groundfish AP/CTE meeting, Portsmouth, NH
10/30/2019

Gulf of Maine
Research Institute
Science. Education. Community.

New England Groundfish Monitoring

- Quantifying total removals of a fishery resource is critical for accurate stock assessment and successful fisheries management.
- Discarded catch can comprise a significant portion of total removals.
- A portion of groundfish trips are observed ($\sim 15-30 \%$) and used to estimate discard rates.

Amendment 23

- NEFMC is considering adjusting the groundfish monitoring program through Amendment 23 to the Northeast Multispecies Fishery Management Plan.
- Aim: To improve the reliability and accountability of commercial catch reporting and to ensure a precise and accurate representation of catch (landings and discards).

New England Groundfish Monitoring

- NEFMC reviewed analyses conducted by the Groundfish PDT relevant to Amendment 23 issues.
- This work identified an observer effect
(Demarest 2019, Linden 2019, Nitschke 2019, Henry et al. 2019)
$>$ Observed trips discards \neq unobserved trips discards
$>$ No quantification of the magnitude of unaccounted for discards
- This could result in inaccurate estimation of total discards and catch.

Observed discards

Unobserved discards

Total discards

- We were contracted by NEFMC to explore the impact of inaccurate catch information on stock assessment performance and management.
- Questions we will address:

If unaccounted discarding is occurring:

- How does this impact the performance of the stock assessment?
- What does it mean for biomass estimates? Status determination?
- How might this influence the management process?
- Would catch limits differ? By how much?

Our Work

What this is testing:

- Impact of inaccurate catch information on stock assessment and management performance (in isolation).

What this isn't testing:

- All potential contributing issues to stock assessment and management performance.

Scenario Testing

- We have developed a modeling tool that allows for simulating Atlantic cod population dynamics and the process of stock assessment and management.
- We can use this to quantify the impact of alternate harvest scenarios.

Scenarios we will test:
Range of unaccounted for discards.

What we will quantify:
Assessment and management performance.

Scenario Testing Framework

Fish and Fishery Model*

Emulates the dynamics of the fish population and key features of how it is fished.

Fish - Gulf of Maine cod

- How fast do fish grow?
- How fast do fish die naturally?
- When do fish start to reproduce? How many young?

Fishery

- How many fish are caught?
- What size of fish are caught?
*also known as an operating model

Simulated Survey and Fishery Data

- We generate "data" that is typically input to stock assessment.
- Simulate the survey \rightarrow Index of abundance (aggregate and at-age)
- Simulate harvest by the fishery \rightarrow Catch information (total and at-age)
- We can introduce bias to catch information to emulate unaccounted for discards.

Reported Landings

Discards

Discards

Unaccounted discards scenarios

- Scenarios will incrementally increase the level of error in discard accounting.

True catch: Base case
Biased accounting of catch: Emulates observed bias in reporting of catch.

Proposed Discard Scenarios	Multiplier
Perfect accounting	
Slight bias in accounting	$+25 \%$
Large bias in accounting	$+50 \%$
Extreme bias in accounting	$+100 \%$

Measuring Impacts

Assessment performance:

- Scenarios will emulate the assessment getting inaccurate catch information.
- We can then quantify the impact of alternative scenarios on the stock assessment.
- Accuracy of SSB, Fishing Mortality, Recruitment estimates
- We can compare stock assessment estimates to their "true" values.

Management performance:

- If stock assessment performance is impacted this can influence catch advice.
- We can compare catch advice and stock status metrics resulting from alternate discard scenarios.
- Evaluate frequency of unintended overfishing.
- We can compare catch advice and management reference points to their "true" values.

Example Output of Impacts of Unreported Catch

Rudd and Branch 2016

Timeline

Task	Sept	Oct	Nov	Dec	Jan	Feb
Meet with PDT members to discuss and agree on model scenarios and inputs	X					
Develop operating model and implement modifications to MSE framework	X	X	X			
Brief PDT on progress and resolve outstanding questions for further work		X				
Conduct discard scenario simulations			X	X	X	
Meet with PDT and discuss modelling results					X	
Present the modelling work for a review by the SSC or other review panel identified by the Council						X
Provide a final report, addressing any SSC						
suggestions for improvement						

Questions?

What's a realistic range of underestimated cod discards?

How did this change before and after sectors?

