Scallop Plan Development Team

August 27-28, 2025
Buzzards Bay, MA
Wifi: Hilton Honors
Promo Code: diamond20

Welcome & Announcements

- Thank you to Survey Groups and Presenters
- Working, technical meeting of PDT/AP on September 12th and Committee meeting on September 15th
 - PDT/AP & CTE hybrid meeting survey groups can participate.

- WiFi: Hilton Honors
- Promotional Code: diamond20

Hybrid Meeting

- Online participants please mute.
- We have multiple omni-mics in the room to capture sound. Meeting participants are not using individual microphones. It may be difficult to hear at times.
- Materials will post to the Council's website this morning.

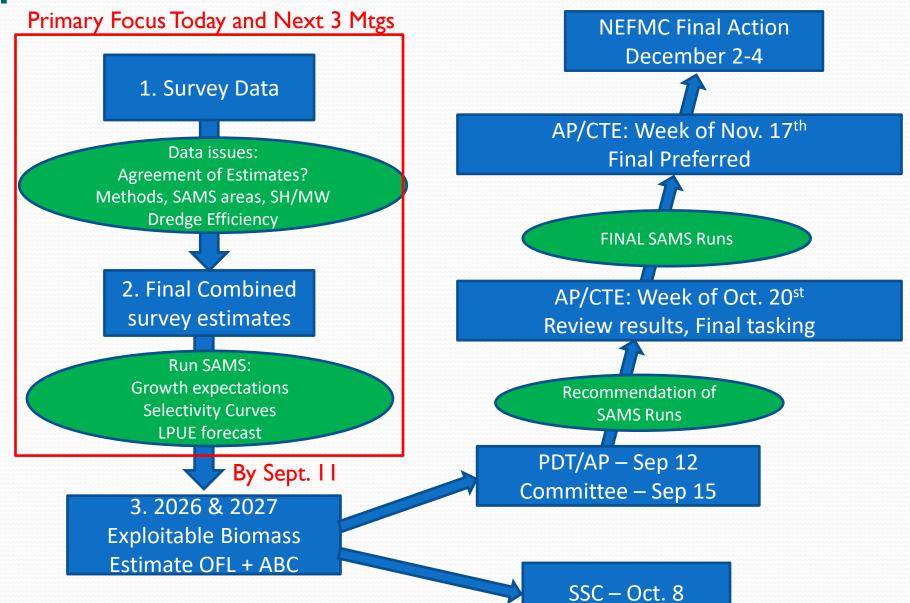
Agenda

Agenda for August 27, 2025 – Subject to change as needed. Link to register.

+

10:00 AM Welcome, summary of agenda, and housekeeping
10:15 AM Review 2025 scallop survey results (VIMS, SMAST, ME DMR, CFF, and NEFSC)
12:30 PM Lunch
1:40 PM Discuss survey results and data treatment

- Review SAMS areas review and make recommendations
 - o Any changes needed?
- SH/MW assumptions and curves
 - o Georges Bank and Mid-Atlantic
 - NLS-South and sensitivities
 - o Gulf of Maine equation and curves
- Dredge efficiency in high density <u>areas?</u>
- AUV Data checks if available.
- Data agreement and combining survey estimates, potential modifications to SAMS areas
- Initial PDT Impressions of outlook for 2026


4:15 PM Review VMS fishery data
4:45 PM Identify next steps for Day 2, including any homework assignments
5:00 Adjourn

Agenda

Agenda for August 28, 2025 - Subject to change as needed. Link to register.

Į.Ť.	_	
•‡•	9:00 AM	Review any follow-up analyses/homework/continue with Aug. 27 agenda (if needed)
	9:30	Continue reviewing 2025 data and outlook for 2026
		Update on nematode and shell disease prevalence in Mid-Atlantic
		Develop PDT input for 2026/2027 specifications (BASE run)
	10:45	Recap: Additional analyses & modeling decisions; plan for next PDT meeting
	11:00	Discuss Council's Risk Policy and review draft Scallop Risk Policy Matrix
		Review Risk Policy use and development (Alpha and Beta phases)
		Complete Risk Policy Matrix (continue via correspondence as needed)
	12:15 PM	Lunch
	1:15	Strategic Plan: Review Strategic Roadmap document and provide input on
		timing, prioritization, etc.
	2:00	Review Scallop PDT memo to Groundfish PDT re: Georges Bank yellowtail
	3:00	Adjourn

Specifications Process

Goals for August 27-28, Sept. 5 meetings:

- Agreement/Consensus on how to treat survey data to initialize SAMS model. Modifications to SAMS parameters.
 - Confirm SAMS areas
 - Survey data treatment (SH/MW, dredge efficiency)
 - Projection assumptions (growth, selectivity, LPUE)
- 2. Develop initial input around biological considerations in particular resource areas, e.g. NLS-S, CAI, CAII, Elephant Trunk/Hudson Canyon.

Upcoming Meeting/Milestones:

We'll need several meetings to review and agree on survey data and SAMS parameters, prepare memo to SSC:

- **TODAY:** August 27, 2025 Scallop PDT review survey results
- TOMORROW: August 28, 2025 Scallop PDT
- September 5, 2025 Scallop PDT review survey results, FW39 (Webinar)
- September 12, 2025 Joint Scallop PDT/ AP meeting (Webinar)
- September 15, 2025 Scallop Committee meeting (Webinar)
- September 24, 2025 Scallop Report, Council meeting (Gloucester, MA)
- TBD Scallop PDT calls to finalize report to SSC.
- October 8, 2025 Science and Statistical Committee meeting (Boston, MA)

Survey Data Treatment issues

STARTING POINTS FOR DISCUSSION:

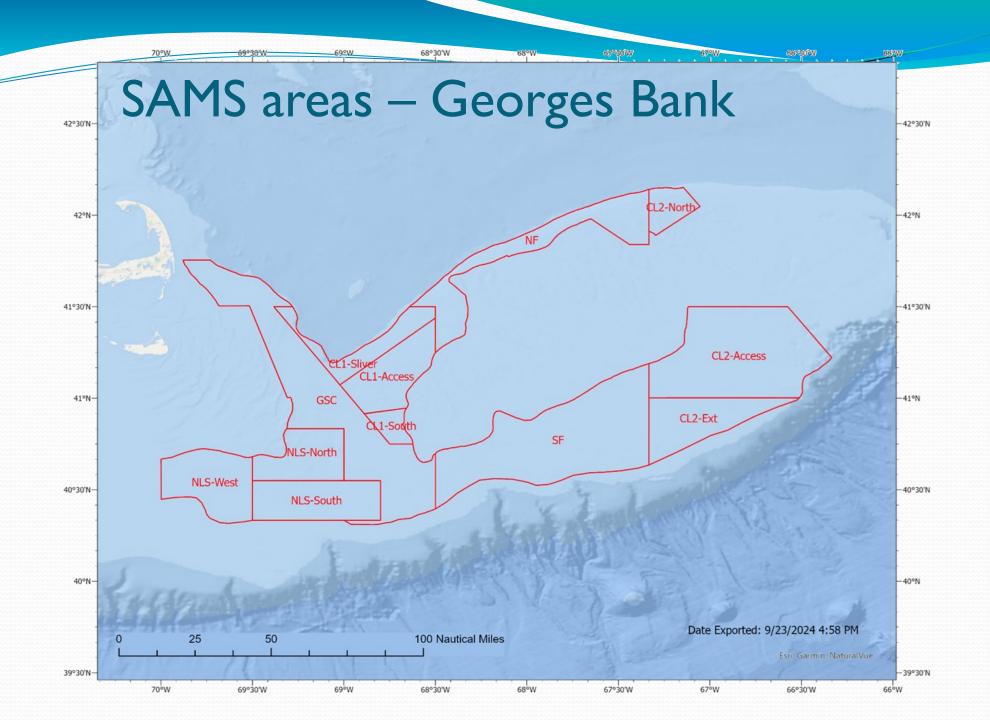
- SAMS Areas: Start with no changes from FW39
 - NLS South and North
- GOM: DMR coverage, AOIs, confirm parts that will be part of SAMS
- **SH/MW equations:** 2025 Research Track
 - Review updated SH/MW equations
 - Consider SH/MW on an area basis.
- Data agreement by SAMS Area
 - Dredge, HabCam, Drop Camera
- Combining Data: Use average of all available surveys for each SAMS area to initialize the model.
 - Dredge efficiency: Factor of 3 (SARC 65, recent FWs)
 - Timing of surveys: Any special comments?

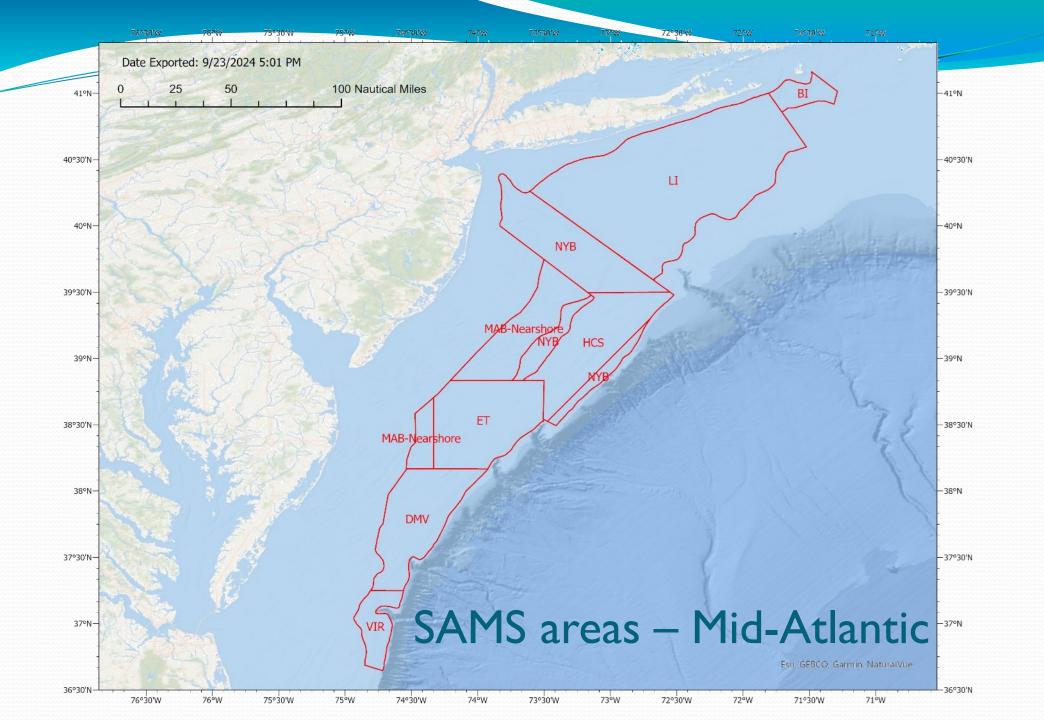
Projection topics

Will start or continue discussion tomorrow and Sept. 5.

STARTING POINTS FOR DISCUSSION:

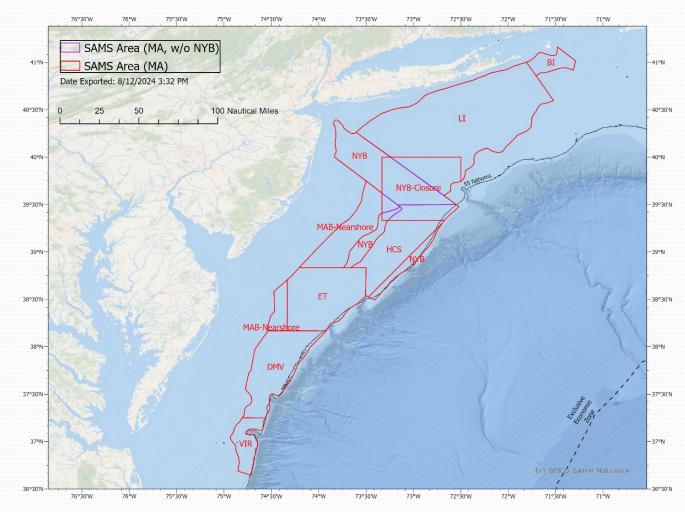
- Review Growth Assumptions:
 - Slow growth in any areas?
 - Projection performance?
- Selectivity Curves: Discuss appropriate curves for scallops in high density areas
- LPUE Model: Consider if projection of LPUE seems overly optimistic.


Survey presentations



Sally Roman, VIMS, Hudson Canyon South 2025

Presentation order


- Sally Roman (VIMS)
- Tasha O'Hara (CFF)
- Dvora Hart (NEFSC)
- Adam Delargy (SMAST)
- Carl Huntsberger (ME DMR)

SAMS area considerations

- Are there any modifications to consider?
- Additional SAMS area boundaries?
 - Backside of the Cape/Stellwagen South?
 - Northern Gulf of Maine

SH/MW equations

- GOAL: Recommend appropriate SH/MW relationships for estimating survey biomass.
- Starting point: 2025 Scallop Research Track Assessment for all areas except for NLS-S, which used VIMS 2016-2023, 2025
 - Slow growth in the NLS following previous years' precedent
- Adjustments to 2025 RT SHMW equation (Doc 4e.)
- GOM: See SMAST/ME DMR equations / estimates
- Other areas to consider?

Georges Bank	Starting SHMW	Sensitivity
CL1-Access	2025 Scallop RT - GB	
CL1-Sliver	2025 Scallop RT - GB	
CL1-South	2025 Scallop RT - GB	
CL2-North	2025 Scallop RT - GB	
CL2-Southeast	2025 Scallop RT - GB	
CLS-Southwest	2025 Scallop RT - GB	
CL2-Ext	2025 Scallop RT - GB	
NLS-North	2025 Scallop RT - GB	
NLS-South	. VIMS 2016-2023, 2025	1. 2025 Scallop RT - GB
NL3-30utii		2. SARC 65 NLS Specific Eq.
NLS-West	2025 Scallop RT - GB	
NF	2025 Scallop RT - GB	
GSC	2025 Scallop RT - GB	
SF	2025 Scallop RT - GB	
Mid Atlantic		
BI	2025 Scallop RT – MA	
LI	2025 Scallop RT – MA	
NYB	2025 Scallop RT – MA	
MAB-Nearshore	2025 Scallop RT – MA	
HCS	2025 Scallop RT – MA	
ET	2025 Scallop RT – MA	
DMV	2025 Scallop RT – MA	

SH/MW equations

- Updated SH/MW equation from 2025 Scallop Research Track is new default equation, except for NLS-S.
- Starting point for NLS-S is VIMS 2016-2023, 2025 equation
 - 2025 RT & SARC 65 NLS specific equation used as sensitivity runs.

Gulf of Maine	Starting SHMW	Sensitivity
Machias Seal Island - NGOM	DMR (2016-2025)	
NGOM Exploratory Areas	DMR (2016-2025)	
N. Stellwagen – NGOM	DMR & SMAST (2016-2025)	
lpswich - NGOM	DMR & SMAST (2016-2025)	
Jeffreys - NGOM	DMR & SMAST (2016-2025)	
Platts - NGOM	DMR (2016-2025)	
S. Stellwagen – South 42 20'	DMR & SMAST (2016-2025)	
Ipswich – MA State	DMR & SMAST (2016-2025)	
Jeffreys - WGOM	DMR & SMAST (2016-2025)	
Fippennies - GOM	DMR & SMAST (2016-2025)	
Cashes – GOM	DMR & SMAST (2016-2025)	
WGOM Closure	DMR & SMAST (2016-2025)	

SH/MW equations

- Updated DMR and DMR/SMAST equations with 2025 data.
- Sensitivities to consider?

2025 Research Track SHMW Equation

Georges Bank (2010 year effect)

```
Meat\ Weight = \exp(-7.3309 + 2.9911(\ln Shell\ Height) - 0.0804(Latitude) + (0.00159 - 0.00156(\ln Shell\ Height)) * depth)
```

Mid-Atlantic (2010 year effect)

```
Meat\ Weight = \exp(-12.6319 + 3.2834(\ln Shell\ Height) + 0.0181(Latitude) + (0.03895 - 0.00933(\ln Shell\ Height)) * depth)
```

Georges Bank (mean year effect)

```
Meat\ Weight = \exp(-7.3309 + 2.9911(\ln Shell\ Height) - 0.0804(Latitude) + (0.00159 - 0.00156(\ln Shell\ Height)) * depth)
```

Mid-Atlantic (2023 year effect)

```
Meat\ Weight = \exp(-12.6319 + 3.2834(\ln Shell\ Height) + 0.0181(Latitude) + (0.03895 - 0.00933(\ln Shell\ Height)) * depth)
```

NLS-S: 2025 RT & VIMS 16-23, 25

	Biomass estimate using:	Biomass estimate using:	Biomass estimate using:	
	VIMS equation.	SARC 65 specific	RTA 2025 GB	
NLS South				
Average meat weight (g)	3.06	3.51	4.06	
Biomass (mt)	24041	27590	31920	
Standard error	5214	5984	6923	
Exploitable average meat weight (g)	3.74	4.35	4.93	
Exploitable biomass (mt)	3262	3796	4305	
Exploitable standard error	707	823	934	

Area	2025 RTS	$\begin{array}{c} \text{VIMS} \\ 16\text{-}23,25 \end{array}$	SARC 65
NLS-South	10,296	7,804	8,966

Proposal: UseVIMS 2016-2023,2025

SAMS Area	BmsMT	BmsMTSE	BmsMT	BmsMTSE	%Diff
	(RT 2025)	(RT 2025)	(VIMS16-23,25)	(VIMS16-23,25)	
NLS-South	8760.44	513.67	13606.26	773.33	-55.31

NGOM SHMW

- Very little difference in estimates using additional year of data
- Proposal: UseDMR & SMAST2016-2025

	Biomass estimate using:	Biomass estimate using:			
	DMR & SMAST combined	DMR & SMAST combined			
	2016 to 2024 equation.	2016 to 2025 equation.			
	NGOM Stellwagen Bank				
Average meat weight (g)	23.4	23.3			
Biomass (mt)	391	389			
Standard error	53	52			
Exploitable average meat	31.6	31.3			
weight (g)					
Exploitable biomass (mt)	221	219			
Exploitable standard error	30	29			
Non-NO	OM Stellwagen Bank (Stellwag	en South)			
Average meat weight (g)	12.7	12.8			
Biomass (mt)	295	297			
Standard error	22	22			
Exploitable average meat	21.3	21.2			
weight (g)					
Exploitable biomass (mt)	128	128			
Exploitable standard error	9	9			
Ipswich Bank					
Average meat weight (g)	27.7	27.5			
Biomass (mt)	131	130			
Standard error	12	11			
Exploitable average meat	32.6	32.3			
weight (g)					
Exploitable biomass (mt)	75	75			
Exploitable standard error	7	7			

Other considerations

Concerns about dredge efficiency in any high-density areas?

Combining Estimates

- Starting point: Use the mean of available surveys in each SAMS area
 - SMAST, VIMS, & NEFSC estimates for GB and MA.
 - CFF estimates provided as a sensitivity.
 - In GOM, SMAST and ME DMR.
- Considerations:
 - SH/MW sensitivities
 - NLS-S
 - How well do the surveys agree in each SAMS area?
 - Several slides with data from short reports
 - Review by "regions"

Data Agreement

- Mean size in the 2025 survey biomass estimates continues to exclude scallops less than 40mm – Need to look at the L-F plots to see all sizes.
- Consider how to handle survey data that is outside of SAMS areas:
 - GOM Stellwagen South, South Cape Cod
 - GB in deep water, and in Area 2
 - West of NLS-W (no scallops detected)
 - Area I Sliver extension (deep water)
 - Eastern GB

Document #3 – Combined Survey Estimates

Discussion

- NLS-South, sensitivities
- CAI
- CAII
- Open Bottom GB
- Southern Mid-Atlantic
 - Data gaps in MAB-Nearshore, HCS, DMV
- Where are we relative to last year?

Any special considerations for 2025?

- Timing of the surveys?
- AUV data

Survey	Approx. Timing	Areas Covered
NEFSC Dredge	7/10-7/19	GSC, CAI, NF, CAII
NEFSC - HabCam Leg 1	6/06 - 6/16	NLS
NEFSC - HabCam Leg 2	6/26 - 7/01	
VIMS Leg 1	6/1 - 6/12	Southern MAB
VIMS Leg 2	6/18 - 6/29	Northern MAB
VIMS Leg 3	7/9-7/20	NL, SF, Area 2
SMAST Leg 1	4/22 - 4/29	NLS, CAII
SMAST Leg 2	5/1 - 5/8	NLS, CAII, HAPC
SMAST Leg 3	5/12 - 5/19	NLS, CAII
SMAST Leg 4	5/21 - 5/28	NLS, CAII
SMAST Leg 5	6/2 - 6/9	NLS, CAI
SMAST Leg 6	6/11 - 6/19	Outer Cape, Stellwagen
SMAST Leg 7	6/23 - 7/1	Jeffreys, Ipswich, Platts, Cashes, Fippennies
CFF Leg 1	5/28 - 6/4	NLSS, CAII, SF
CFF Leg 2	5/17 - 5/23	NYB, LI, BI
CFF Leg 3	7/16-7/22	Southern MAB (excluding HCS)
ME DMR Leg 1	5/1-5/15	Stellwagen, Ipswich & Jefferies
ME DMR Leg 2	6/1-6/7	Exploratory Areas & MSI

Recap decision points from yesterday

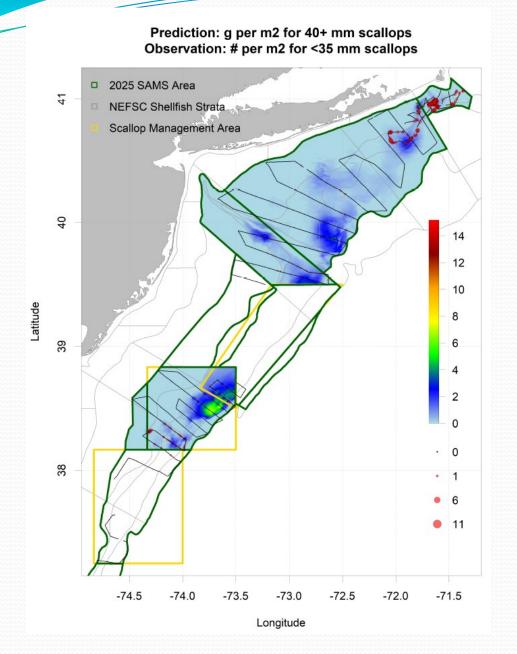
- SAMS areas:
- SHMW:
- Combining estimates:

Initial PDT impression of 2026 outlook?

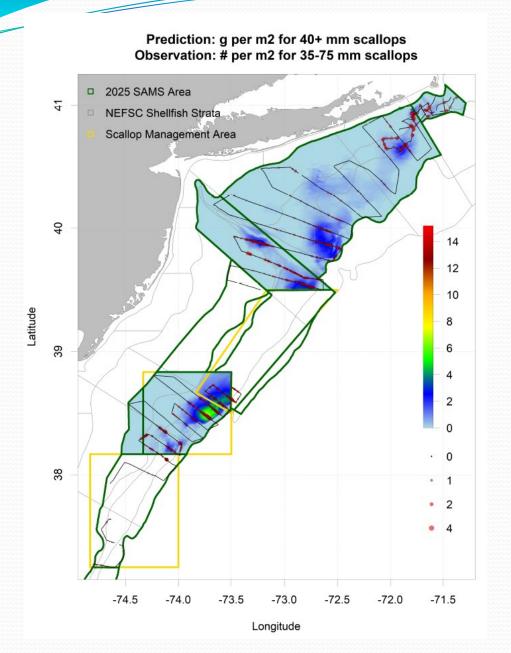
- Nantucket Lightship South
- Area I
- Area II
- Georges Bank Open Bottom
- Northern Edge

- New York Bight
- Hudson Canyon South
- Elephant Trunk
- Mid-Atlantic Open
- Stellwagen Bank

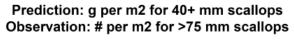
Initial SAMS runs

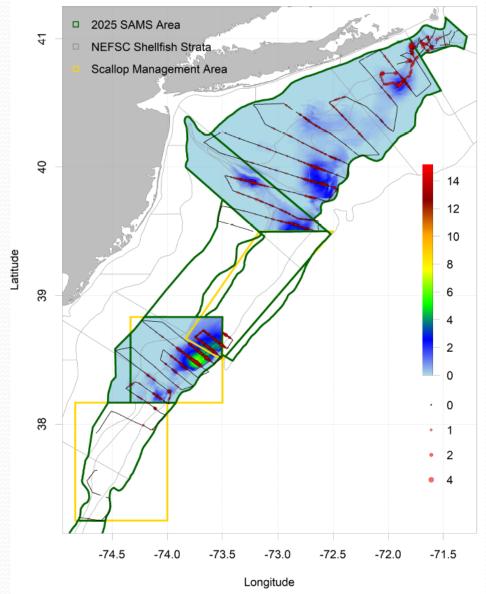

- Discussion from 2024
 - Elephant Trunk open in FY2026 (1-year closure)
 - Area II closed in FY2026
 - Reconsider modifications to selectivity assumptions

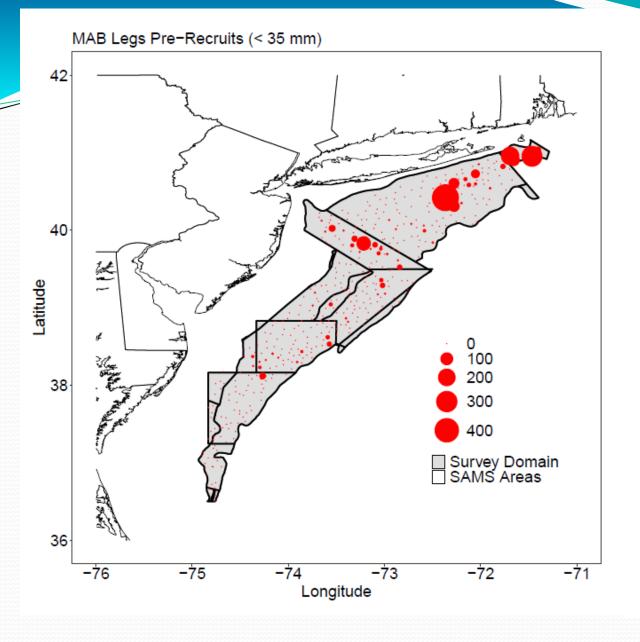
Recap, Plan for next meeting

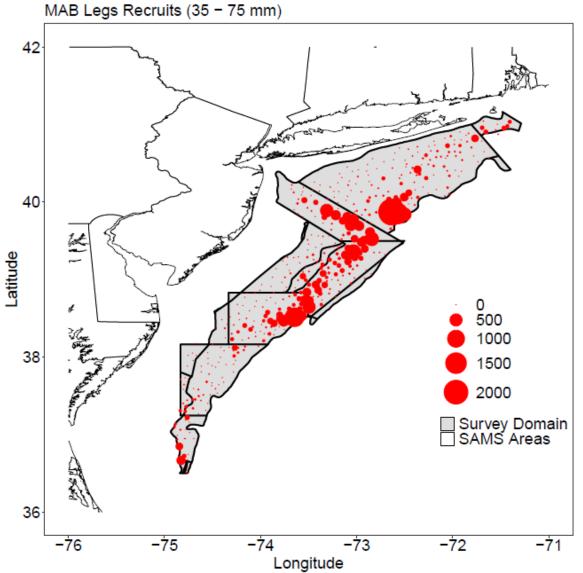

Additional analyses

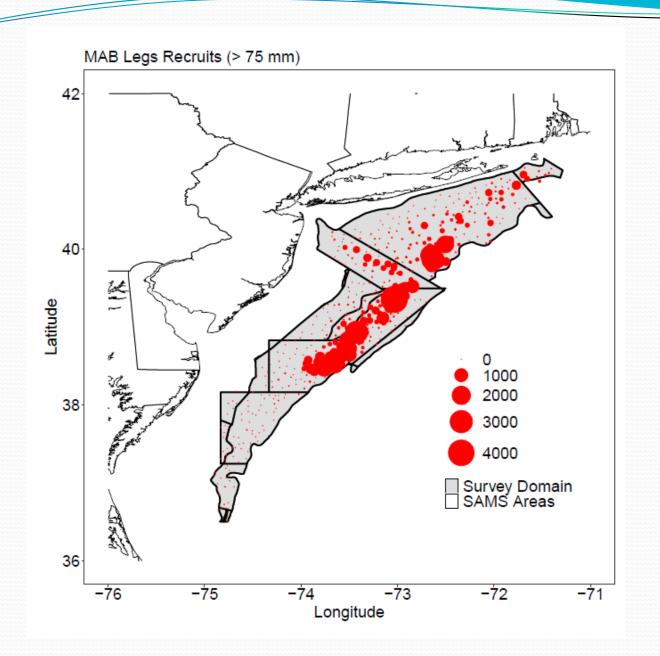
Thank you!

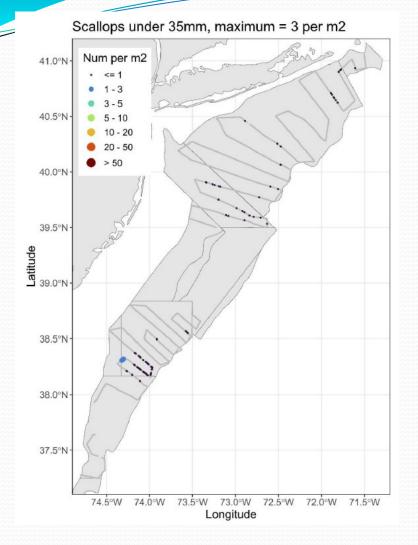

2025 Survey Data

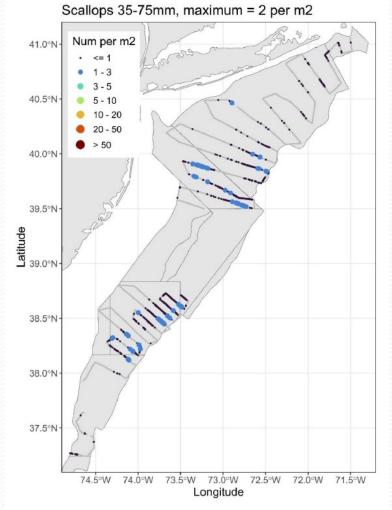


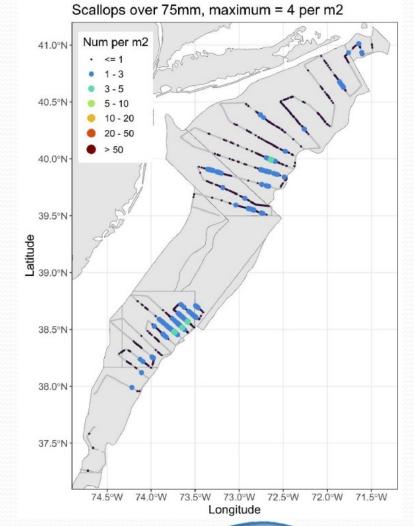


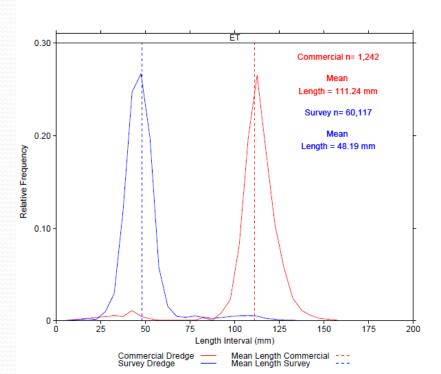




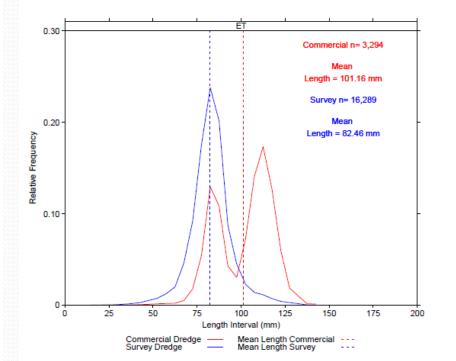








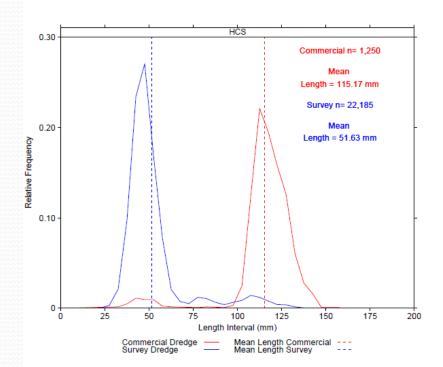
Elephant Trunk



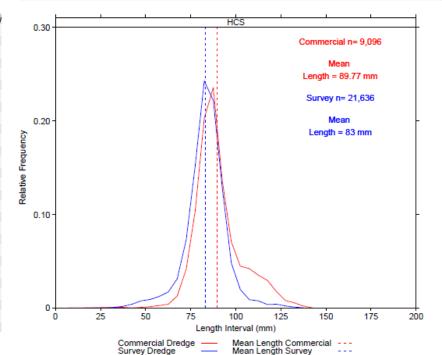
2024

Number Caught at Length by Gear Left - Relative Length Frequency Graph Right - Expanded Number of Scallops Caught at Length Table

SAMS_Area	_	Commercial	•
ET	17.5	0	133
ET	22.5	0	101
ET	27.5	0	598
ET	32.5	7	1,771
ET	37.5	6	7,188
ET	42.5	14	14,835
ET	47.5	6	16,030
ET	52.5	3	11,904
ET	57.5	1	3,478
ET	62.5	0	936
ET	67.5	1	295
ET	72.5	0	237
ET	77.5	1	325
ET	82.5	4	237
ET	87.5	1	162
ET	92.5	11	223
ET	97.5	29	293
ET	102.5	102	325
ET	107.5	244	342
ET	112.5	329	312
ET	117.5	226	165
ET	122.5	129	109
ET	127.5	71	56
ET	132.5	30	56
ET	137.5	14	1
ET	142.5	7	3
ET	147.5	3	1
ET	157.5	1	0


SAMS_Area	Length	Commercial	Survey
ET	17.5	0	1
ET	22.5	0	2
ET	27.5	0	5
ET	32.5	0	15
ET	37.5	1	26
ET	42.5	2	46
ET	47.5	3	82
ET	52.5	5	124
ET	57.5	6	204
ET	62.5	7	325
ET	67.5	16	747
ET	72.5	58	1,494
ET	77.5	179	2,855
ET	82.5	426	3,874
ET	87.5	357	3,284
ET	92.5	141	1,422
ET	97.5	100	733
ET	102.5	238	374
ET	107.5	463	228
ET	112.5	571	185
ET	117.5	419	118
ET	122.5	198	68
ET	127.5	62	46
ET	132.5	32	26
ET	137.5	5	5
ET	142.5	4	1

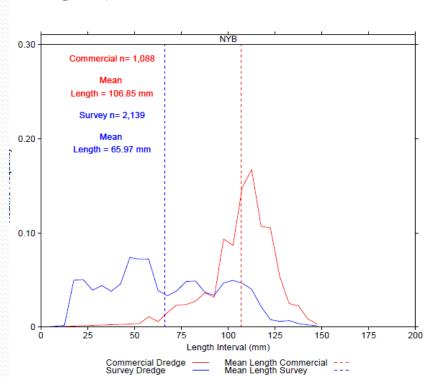
Hudson Canyon South



2024

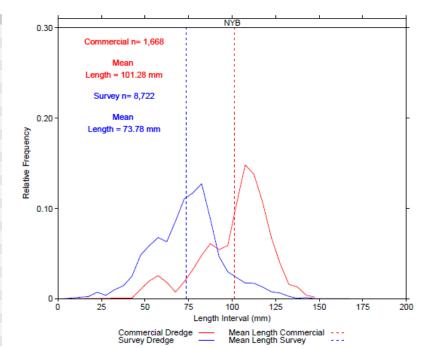
Number Caught at Length by Gear Left - Relative Length Frequency Graph Right - Expanded Number of Scallops Caught at Length Table

SAMS_Area	Length	Commercial	Survey
HCS	17.5	0	1
HCS	22.5	0	5
HCS	27.5	0	73
HCS	32.5	2	472
HCS	37.5	6	2,174
HCS	42.5	14	5,191
HCS	47.5	12	5,999
HCS	52.5	12	3,741
HCS	57.5	3	1,724
HCS	62.5	2	458
HCS	67.5	0	166
HCS	72.5	0	115
HCS	77.5	1	269
HCS	82.5	2	236
HCS	87.5	0	145
HCS	92.5	1	88
HCS	97.5	4	146
HCS	102.5	31	193
HCS	107.5	155	317
HCS	112.5	276	267
HCS	117.5	243	175
HCS	122.5	197	90
HCS	127.5	157	84
HCS	132.5	76	35
HCS	137.5	35	9
HCS	142.5	20	7
HCS	147.5	1	4
HCS	157.5	1	0


SAMS_Area	Length	Commercial	Survey
HCS	27.5	0	3
HCS	32.5	0	17
HCS	37.5	8	41
HCS	42.5	2	91
HCS	47.5	7	167
HCS	52.5	14	200
HCS	57.5	25	270
HCS	62.5	37	371
HCS	67.5	117	676
HCS	72.5	378	1,580
HCS	77.5	948	3,299
HCS	82.5	1,844	5,254
HCS	87.5	2,143	4,802
HCS	92.5	1,240	2,775
HCS	97.5	644	1,043
HCS	102.5	407	430
HCS	107.5	384	195
HCS	112.5	319	168
HCS	117.5	270	84
HCS	122.5	162	90
HCS	127.5	74	51
HCS	132.5	51	24
HCS	137.5	19	7
HCS	142.5	3	0

New York Bight

VIRGINIA INSTITUTE OF MARINE SCIENCE
MARINE ADVISORY PROGRAM

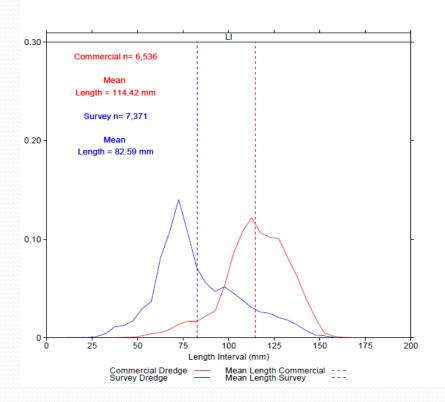

2024

Number Caught at Length by Gear Left - Relative Length Frequency Graph Right - Expanded Number of Scallops Caught at Length Table

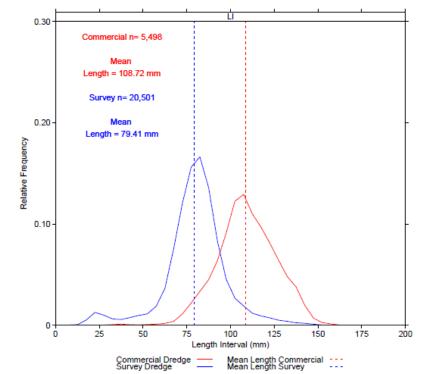
SAMS_Area	Length	Commercial	Survey
NYB	12.5	0	4
NYB	17.5	0	107
NYB	22.5	0	108
NYB	27.5	0	84
NYB	32.5	0	94
NYB	37.5	0	81
NYB	42.5	0	98
NYB	47.5	0	158
NYB	52.5	4	154
NYB	57.5	12	154
NYB	62.5	6	83
NYB	67.5	17	71
NYB	72.5	26	82
NYB	77.5	26	104
NYB	82.5	30	105
NYB	87.5	40	79
NYB	92.5	35	72
NYB	97.5	102	100
NYB	102.5	94	106
NYB	107.5	161	100
NYB	112.5	182	86
NYB	117.5	116	47
NYB	122.5	115	17
NYB	127.5	58	13
NYB	132.5	27	15
NYB	137.5	24	8
NYB	142.5	10	5
NYB	147.5	4	3

2025

JAMIJ_AICU	Longui	Commicician	Julyo
NYB	17.5	0	22
NYB	22.5	0	63
NYB	27.5	1	35
NYB	32.5	1	88
NYB	37.5	1	126
NYB	42.5	1	218
NYB	47.5	18	424
NYB	52.5	33	514
NYB	57.5	43	592
NYB	62.5	31	552
NYB	67.5	13	750
NYB	72.5	32	965
NYB	77.5	54	1,023
NYB	82.5	80	1,112
NYB	87.5	102	771
NYB	92.5	91	408
NYB	97.5	99	261
NYB	102.5	175	206
NYB	107.5	247	153
NYB	112.5	230	151
NYB	117.5	178	114
NYB	122.5	113	69
NYB	127.5	66	57
NYB	132.5	27	25
NYB	137.5	22	5
NYB	142.5	7	13
NYB	147.5	3	2
NYB	152.5	0	2
NYB	167.5	0	1


SAMS Area Length Commercial Survey

Long Island

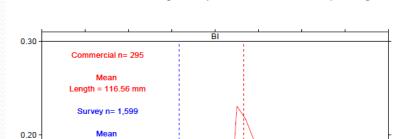


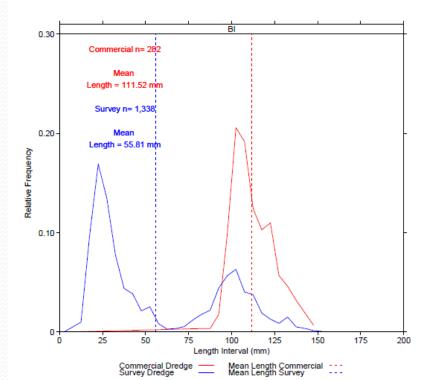
2024

Number Caught at Length by Gear
Left - Relative Length Frequency Graph
Right - Expanded Number of Scallops Caught at Length Table

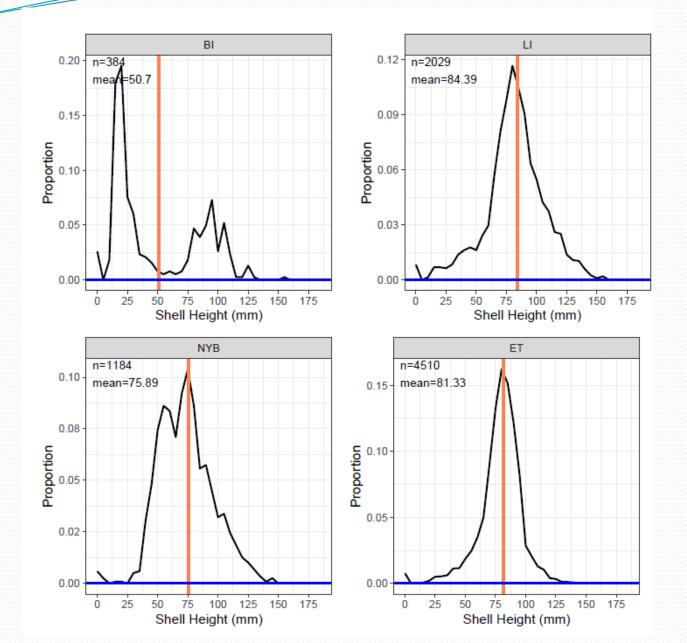
CAME Area	Longth	Commercial	Curvey
_	17.5	0	
LI		_	2
LI	22.5	0	2
LI	27.5	0	9
LI	32.5	0	32
LI	37.5	1	82
LI	42.5	3	91
LI	47.5	4	128
LI	52.5	13	218
LI	57.5	26	270
LI	62.5	34	596
LI	67.5	55	790
LI	72.5	90	1,034
LI	77.5	108	782
LI	82.5	109	520
LI	87.5	144	406
LI	92.5	178	344
LI	97.5	337	381
LI	102.5	554	334
LI	107.5	702	282
LI	112.5	795	226
LI	117.5	693	191
LI	122.5	666	182
LI	127.5	656	151
LI	132.5	525	131
LI	137.5	405	95
LI	142.5	257	53
LI	147.5	133	20
LI	152.5	32	14
Li	157.5	11	4
LI	162.5	3	0
LI.	167.5	1	0

SAMS_Area	Length	Commercial	Survey
LI	12.5	0	15
LI	17.5	0	109
LI	22.5	1	262
LI	27.5	2	208
LI	32.5	0	132
LI	37.5	7	119
LI	42.5	4	159
LI	47.5	3	202
LI	52.5	5	235
LI	57.5	7	386
LI	62.5	11	749
LI	67.5	22	1,550
LI	72.5	62	2,471
LI	77.5	121	3,201
LI	82.5	185	3,410
LI	87.5	248	2,787
LI	92.5	351	1,709
LI	97.5	501	937
LI	102.5	674	551
LI	107.5	711	395
LI	112.5	605	246
LI	117.5	532	191
LI	122.5	446	152
LI	127.5	353	105
LI	132.5	264	83
LI	137.5	209	53
LI	142.5	108	42
LI	147.5	39	24
LI	152.5	15	8
LI	157.5	8	4
LI	162.5	2	4
LI	167.5	1	0

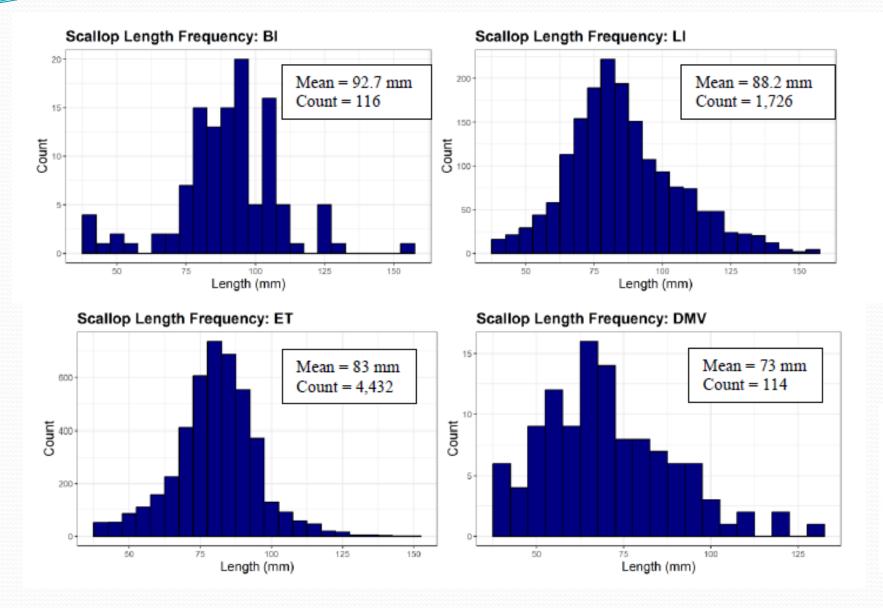

Block Island

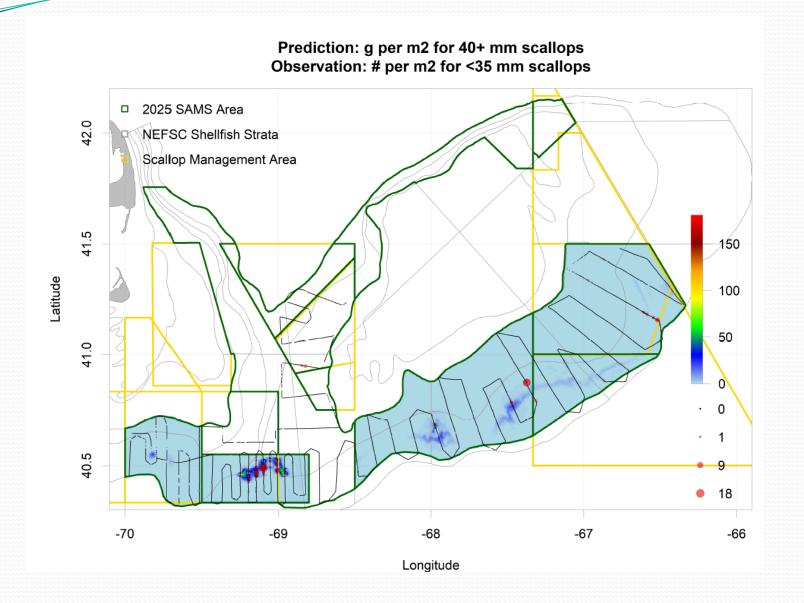

Length = 79.34 mm

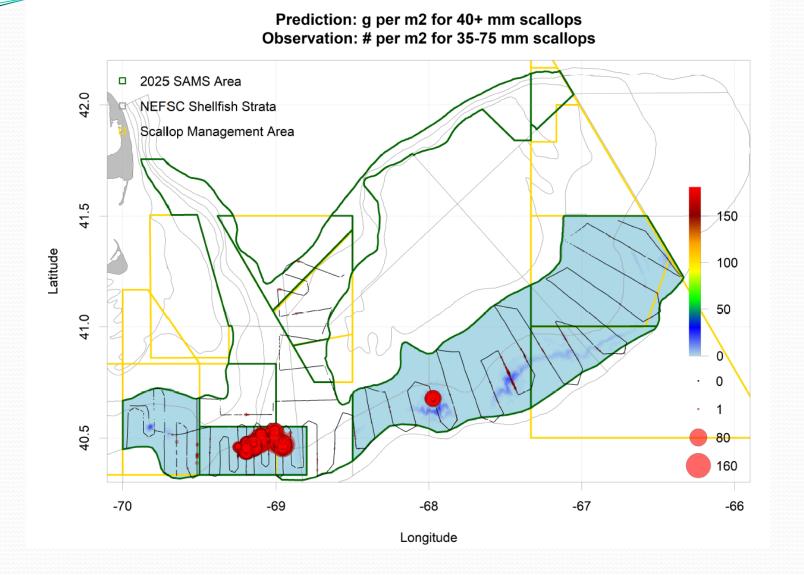
Number Caught at Length by Gear Left - Relative Length Frequency Graph Right - Expanded Number of Scallops Caught at Length Table

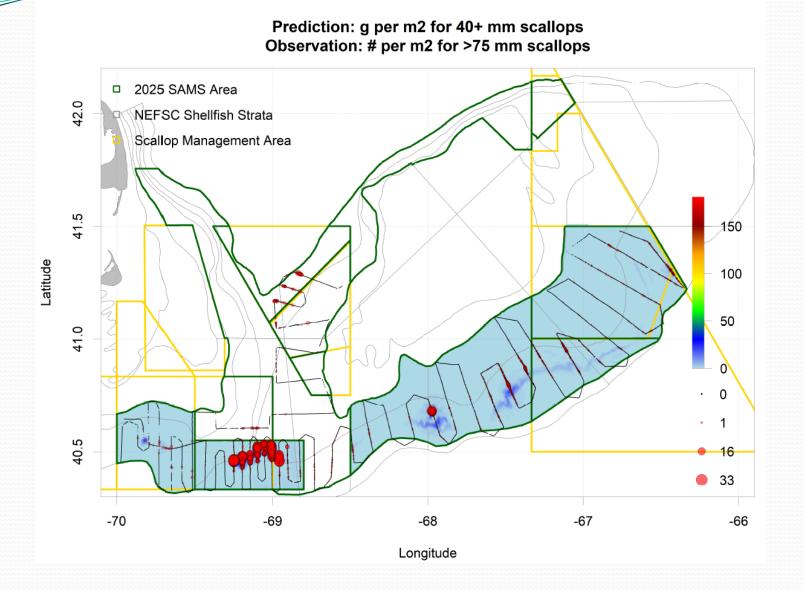


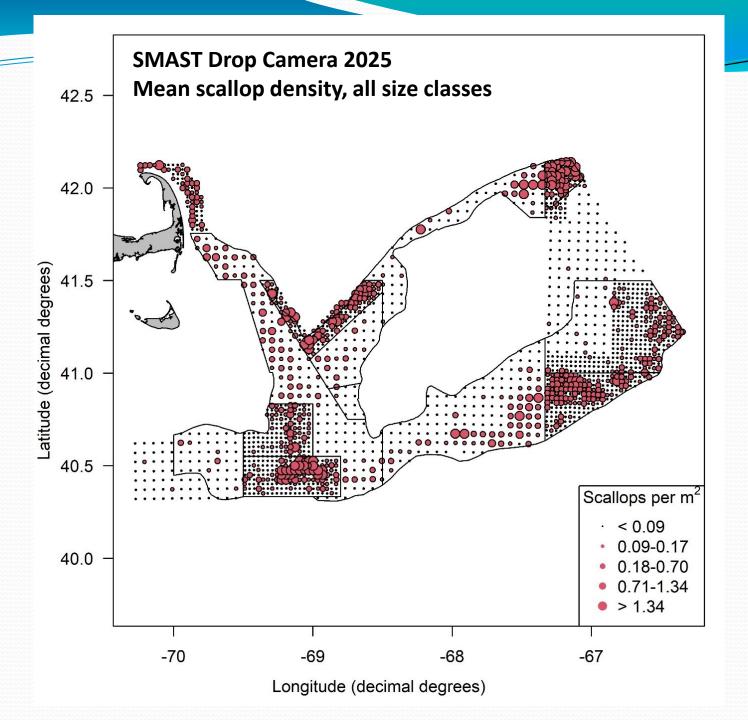
ercial n= 295					
Mean = 116.56 mm					
ey n= 1,599	Ν				
Mean n = 79.34 mm					-
			\		-
50 75		125	150	175	200
	Length Interval (m	m)			
Commercial Dredge Survey Dredge	Mean Le	ngth Comm ngth Surve	nercial y		

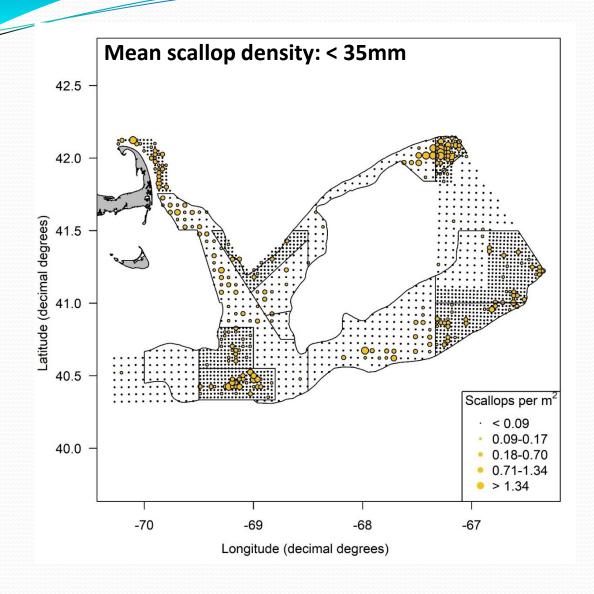

EAMS Aroa	Longth	Commercial	Survoy
_			•
BI	32.5	0	13
BI	37.5	0	17
BI	42.5	0	20
BI	47.5	0	39
BI	52.5	0	63
BI	57.5	0	105
BI	62.5	1	119
BI	67.5	0	63
BI	72.5	0	92
BI	77.5	0	138
BI	82.5	2	219
BI	87.5	4	272
BI	92.5	3	220
BI	97.5	6	97
BI	102.5	10	31
BI	107.5	27	21
BI	112.5	68	20
BI	117.5	64	18
BI	122.5	57	19
BI	127.5	27	8
BI	132.5	13	6
BI	137.5	10	1
BI	142.5	3	0

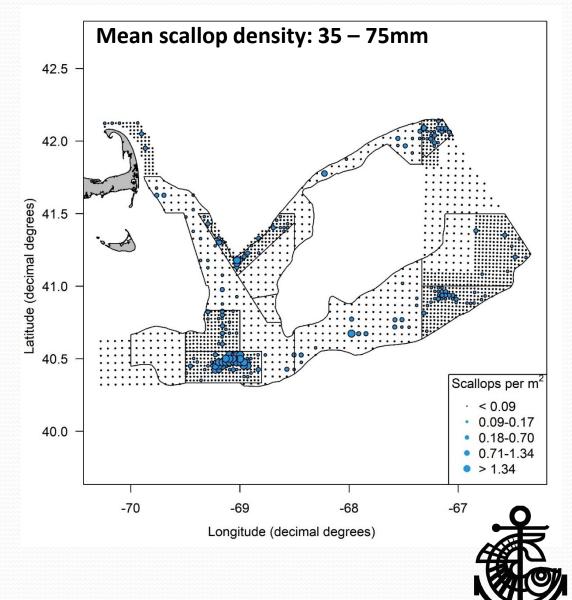

SAMS_Area	Length	Commercial	Survey
BI	12.5	0	13
BI	17.5	0	130
BI	22.5	0	226
BI	27.5	0	180
BI	32.5	0	104
BI	37.5	0	59
BI	42.5	0	52
BI	47.5	0	29
BI	52.5	0	34
BI	57.5	0	11
BI	62.5	0	4
BI	67.5	0	5
BI	72.5	0	7
BI	77.5	0	16
BI	82.5	1	24
BI	87.5	1	29
BI	92.5	5	59
BI	97.5	28	76
BI	102.5	58	84
BI	107.5	54	54
BI	112.5	35	50
BI	117.5	29	26
BI	122.5	31	17
BI	127.5	16	12
BI	132.5	13	20
BI	137.5	9	7
BI	142.5	0	5
BI	147.5	2	2
BI	152.5	0	1

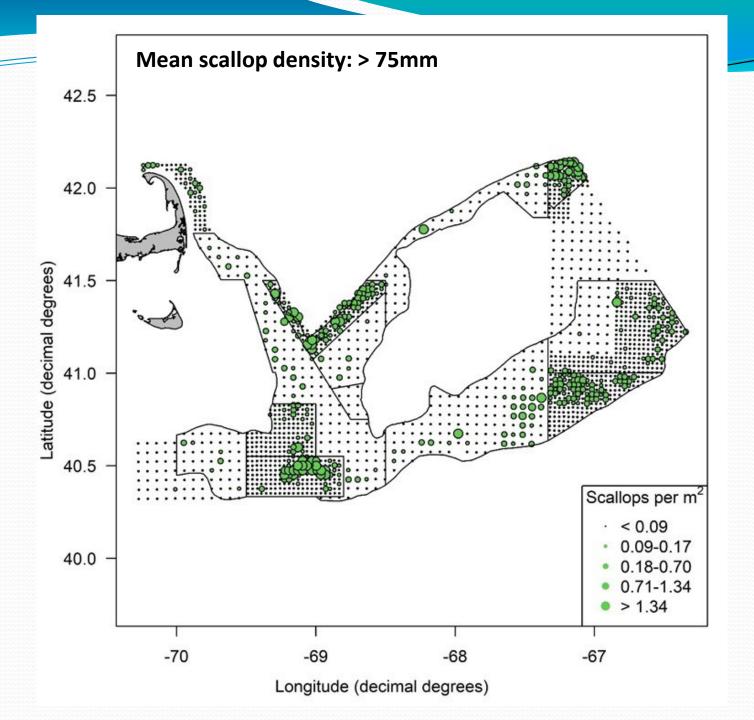


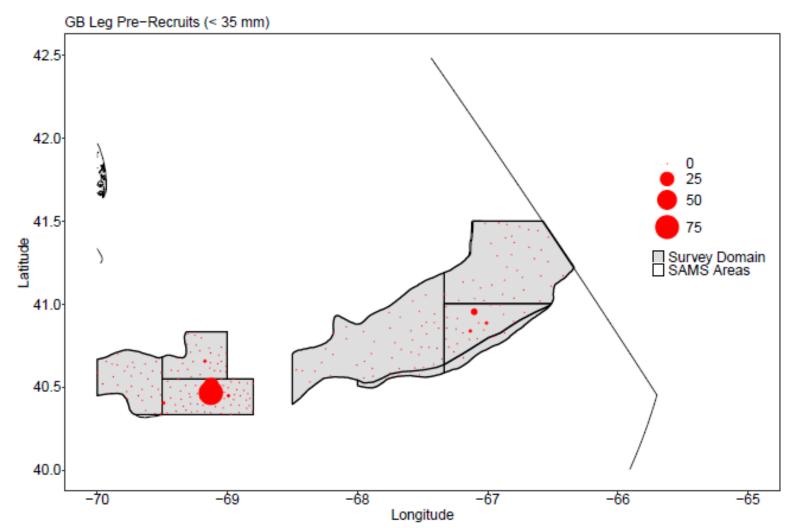


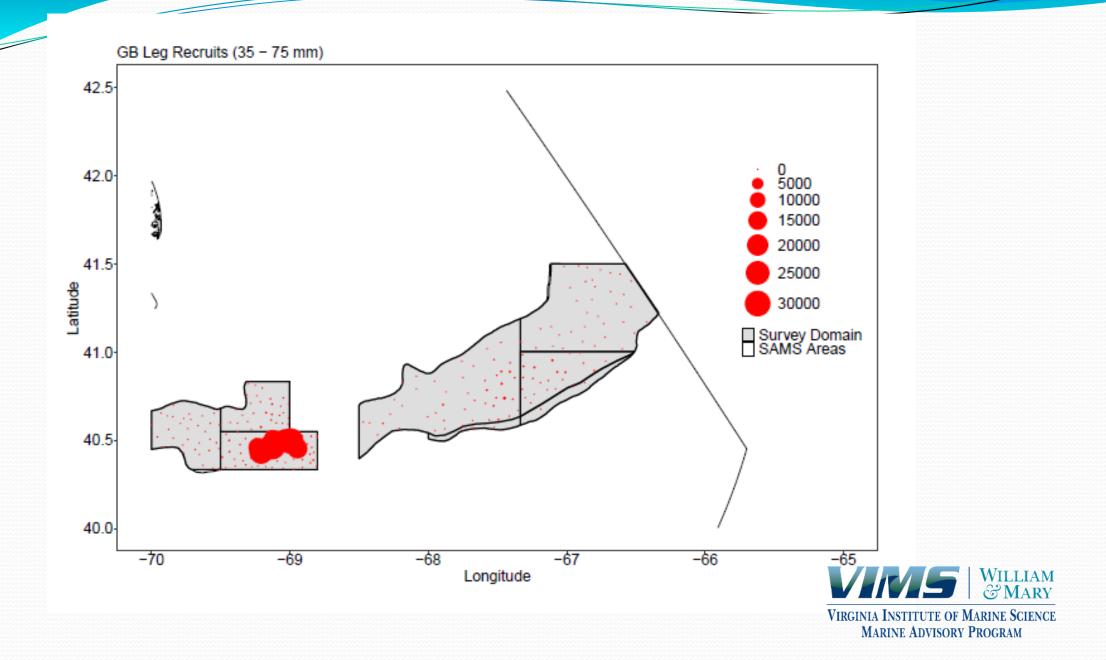


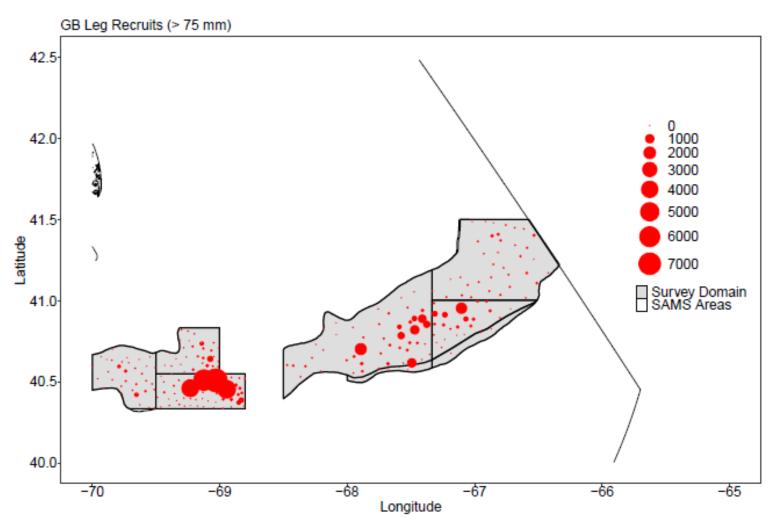


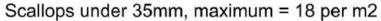


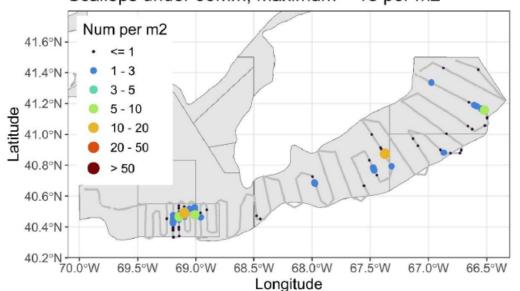


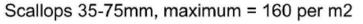


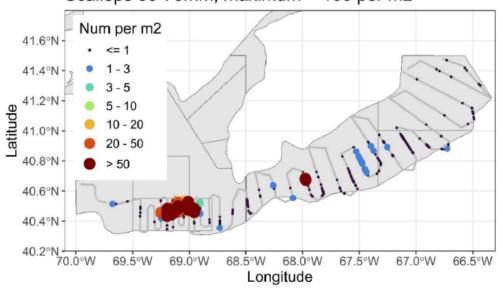


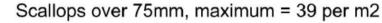


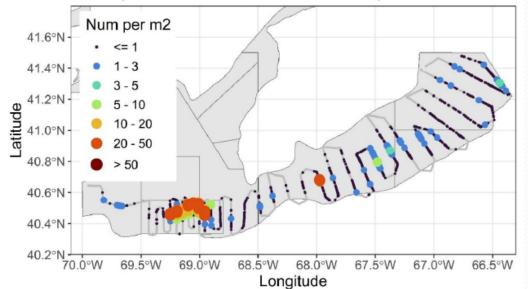


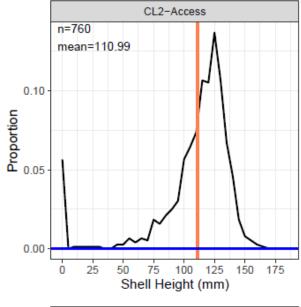


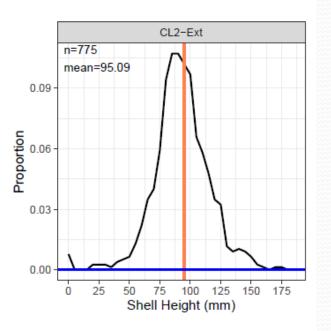


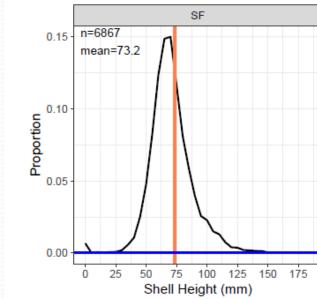


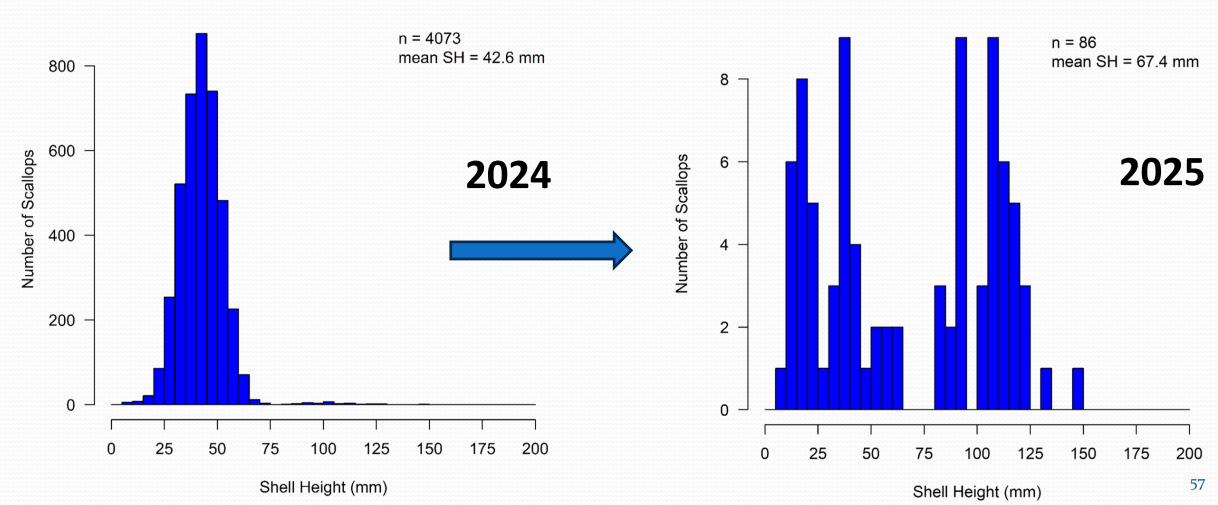


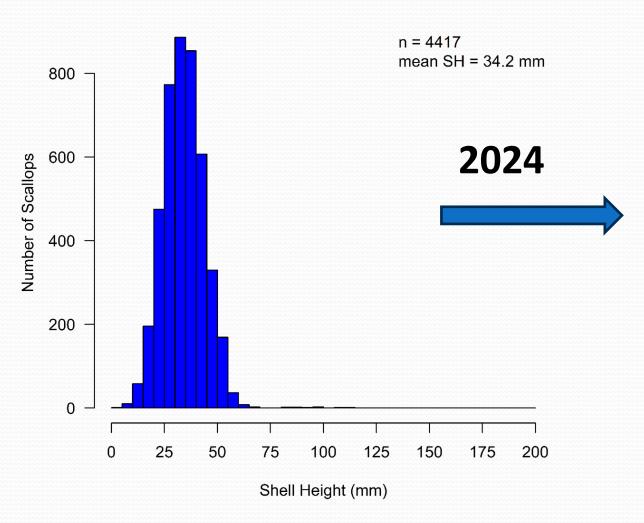


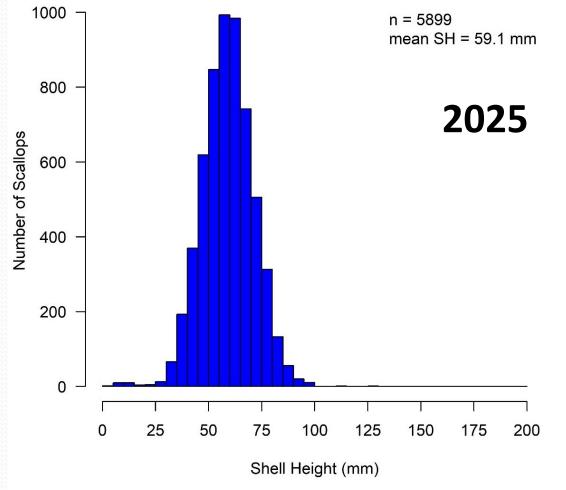




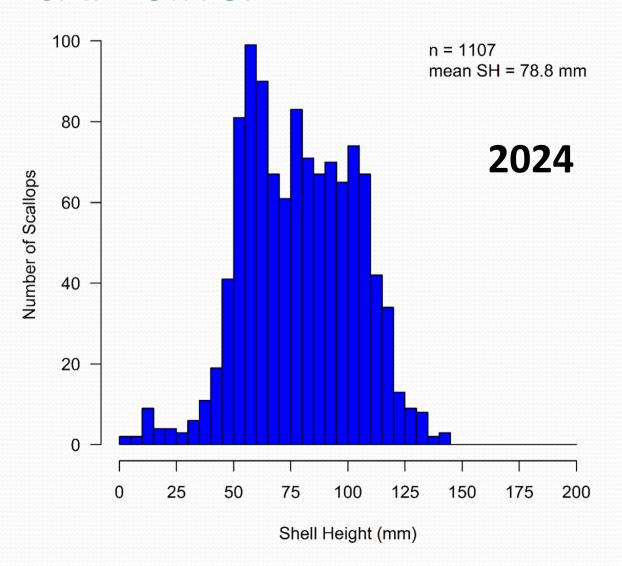




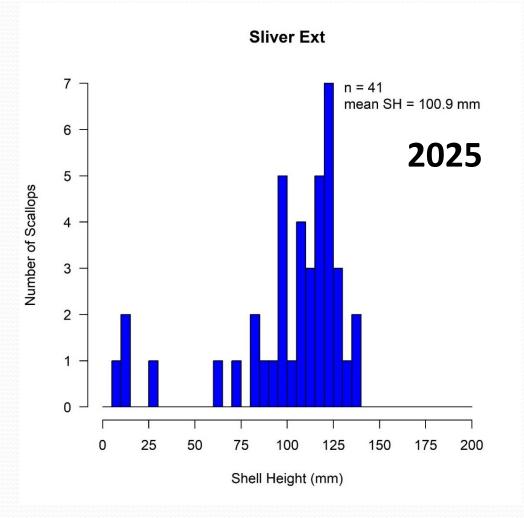

NLS - North



NLS - South

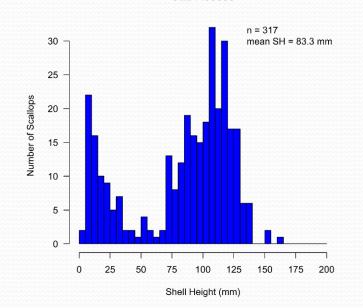


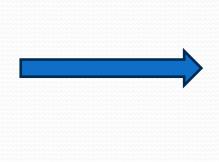
CAI - Sliver

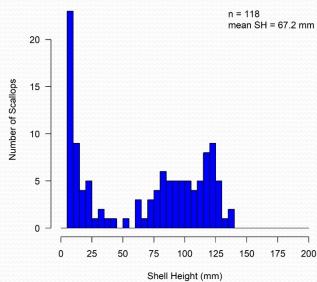


2024 2025

Closed Area II

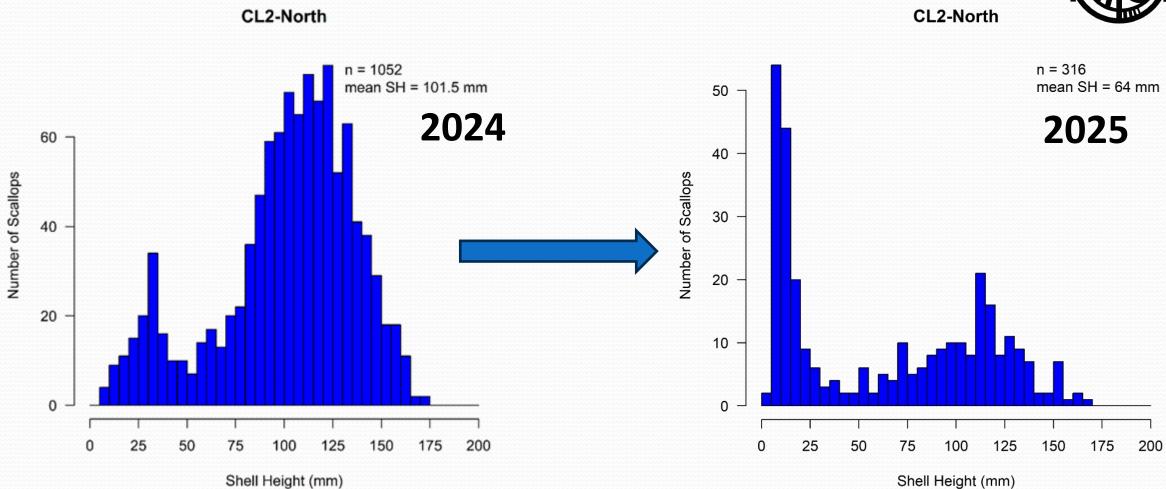

CL2-Ext


20 | Shell Height (mm) | n = 211 | mean SH = 70.7 mm

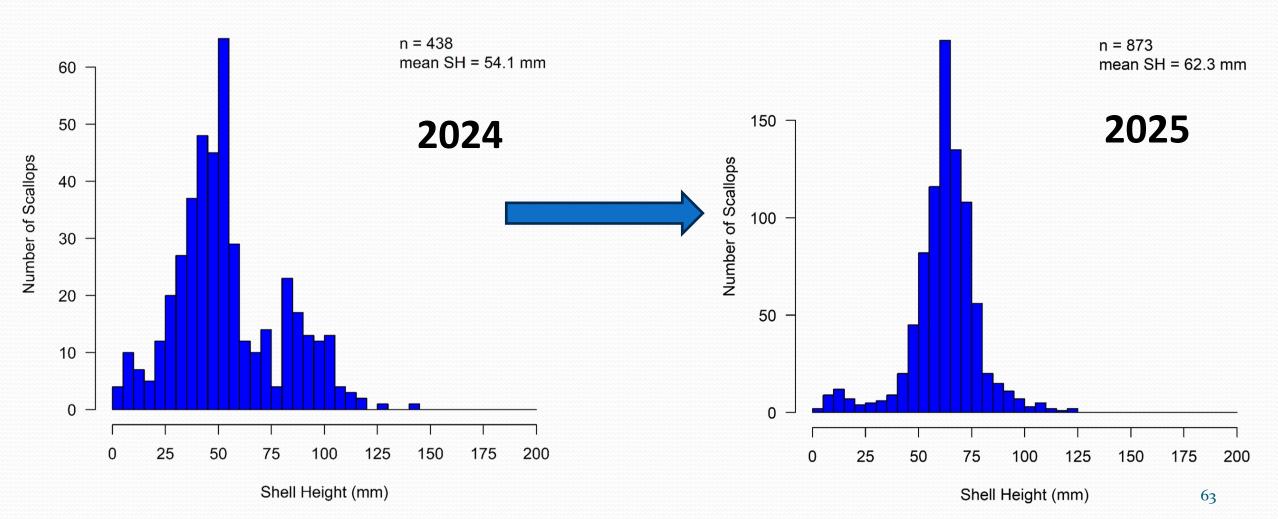

CL2-Ext

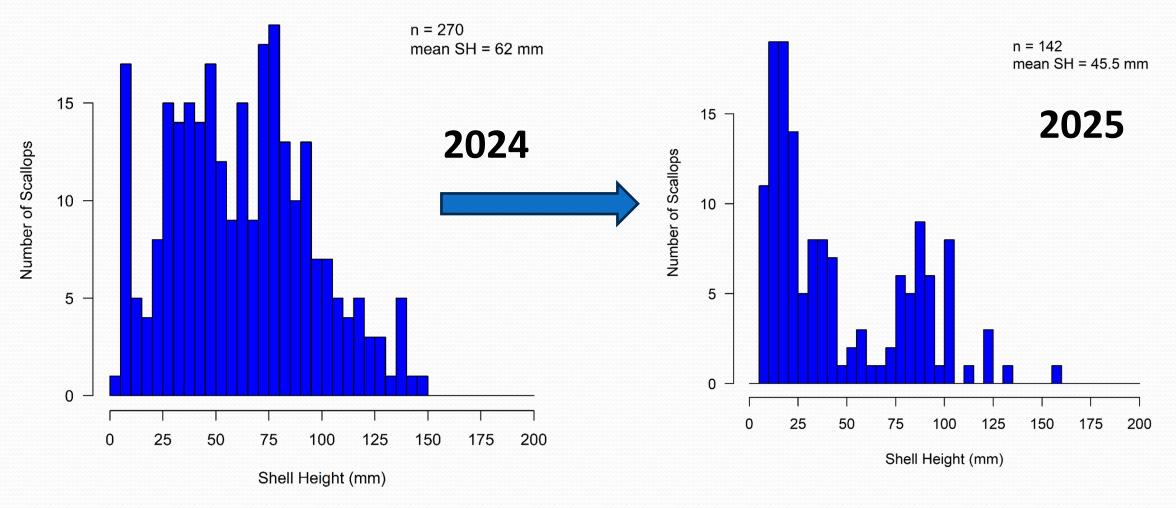
2024

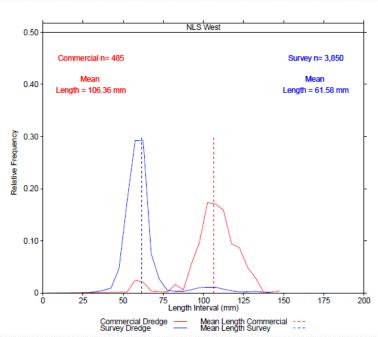
CL2-Access

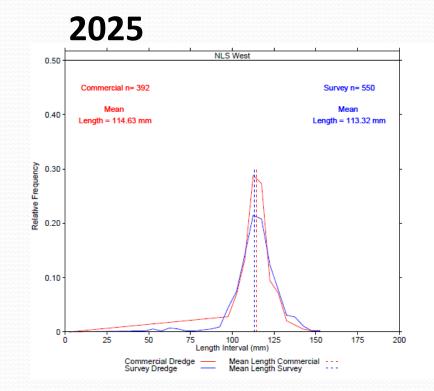


CL2-Access


Northern Edge HAPC

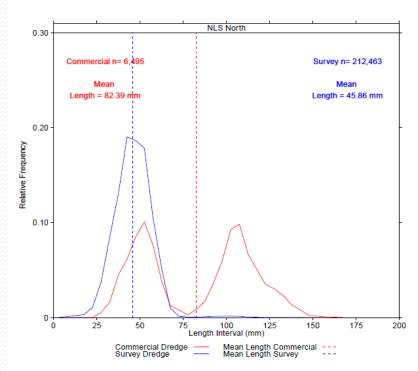

Southern Flank


Great South Channel



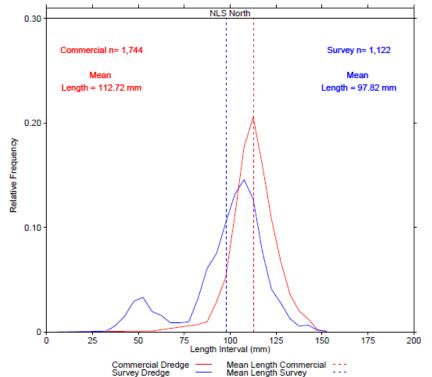
VIRGINIA INSTITUTE OF MARINE SCIENCE MARINE ADVISORY PROGRAM

SAMS_Area	Length	Commercial	Survey
NLS_West	27.5	0	1
NLS_West	37.5	0	19
NLS_West	42.5	0	38
NLS_West	47.5	0	185
NLS_West	52.5	1	679
NLS_West	57.5	12	1,126
NLS_West	62.5	10	1,125
NLS_West	67.5	2	289
NLS_West	72.5	0	104
NLS_West	77.5	1	20
NLS_West	82.5	8	14
NLS_West	87.5	3	13
NLS_West	92.5	27	25
NLS_West	97.5	47	40
NLS_West	102.5	84	43
NLS_West	107.5	83	43
NLS_West	112.5	77	29
NLS_West	117.5	46	17
NLS_West	122.5	42	10
NLS_West	127.5	24	9
NLS_West	132.5	14	13
NLS_West	137.5	1	7
NLS_West	142.5	1	1
NLS_West	147.5	2	0


SAMS_Area	Length	Commercial	Survey
NLS_West	42.5	0	1
NLS_West	47.5	0	1
NLS_West	52.5	0	3
NLS_West	57.5	0	1
NLS_West	62.5	0	4
NLS_West	67.5	0	3
NLS_West	72.5	0	1
NLS_West	77.5	0	1
NLS_West	87.5	0	3
NLS_West	92.5	0	5
NLS_West	97.5	11	25
NLS_West	102.5	27	41
NLS_West	107.5	52	78
NLS_West	112.5	113	118
NLS_West	117.5	107	114
NLS_West	122.5	37	68
NLS_West	127.5	28	43
NLS_West	132.5	8	17
NLS_West	137.5	5	15
NLS_West	142.5	2	6
NLS_West	147.5	1	1
NLS_West	152.5	1	1

NLS-North

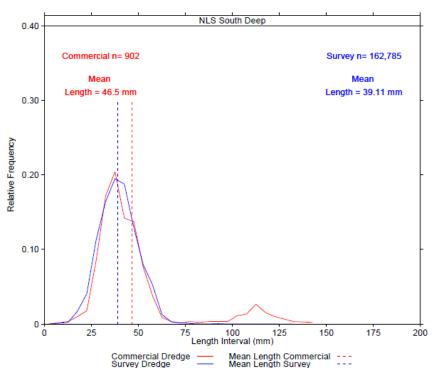
VIRGINIA INSTITUTE OF MARINE SCIENCE
MARINE ADVISORY PROGRAM


2024

Number Caught at Length by Gear Left - Relative Length Frequency Graph Right - Expanded Number of Scallops Caught at Length Table

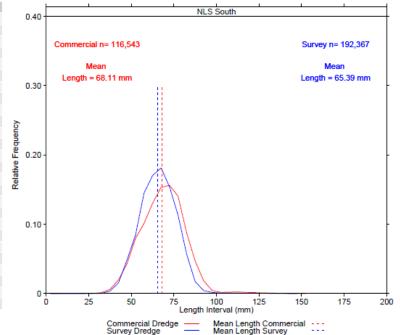
SAMS_Area	Length	Commercial	Survey
NLS_North	17.5	0	668
NLS_North	22.5	1	2,235
NLS_North	27.5	34	7,971
NLS_North	32.5	107	18,063
NLS_North	37.5	293	27,646
NLS_North	42.5	400	40,402
NLS_North	47.5	552	39,612
NLS_North	52.5	654	37,935
NLS_North	57.5	498	22,369
NLS_North	62.5	251	11,028
NLS_North	67.5	82	2,138
NLS_North	72.5	52	276
NLS_North	77.5	21	152
NLS_North	82.5	56	139
NLS_North	87.5	111	200
NLS_North	92.5	238	287
NLS_North	97.5	388	314
NLS_North	102.5	602	346
NLS_North	107.5	639	283
NLS_North	112.5	433	157
NLS_North	117.5	330	87
NLS_North	122.5	228	36
NLS_North	127.5	198	43
NLS_North	132.5	154	30
NLS_North	137.5	90	26
NLS_North	142.5	53	15
NLS_North	147.5	15	3
NLS_North	152.5	9	2
NLS_North	157.5	5	1
NLS_North	167.5	1	0

SAMS Area	Lenath	Commercial	Surve
NLS North	_	0	1
NLS North	37.5	0	7
NLS North	42.5	0	17
NLS_North	47.5	0	33
NLS_North	52.5	0	37
NLS_North	57.5	2	22
NLS_North	62.5	0	18
NLS_North	67.5	0	10
NLS_North	72.5	0	10
NLS_North	77.5	0	11
NLS_North	82.5	13	36
NLS_North	87.5	18	69
NLS_North	92.5	50	84
NLS_North	97.5	91	117
NLS_North	102.5	193	148
NLS_North	107.5	308	164
NLS_North	112.5	358	143
NLS_North	117.5	279	87
NLS_North	122.5	188	46
NLS_North	127.5	118	31
NLS_North	132.5	64	15
NLS_North	137.5	35	6
NLS_North	142.5	22	8
NLS_North	147.5	4	2
NLS_North	152.5	1	1


NLS-South

VIRGINIA INSTITUTE OF MARINE SCIENCE
MARINE ADVISORY PROGRAM

Number Caught at Length by Gear Left - Relative Length Frequency Graph

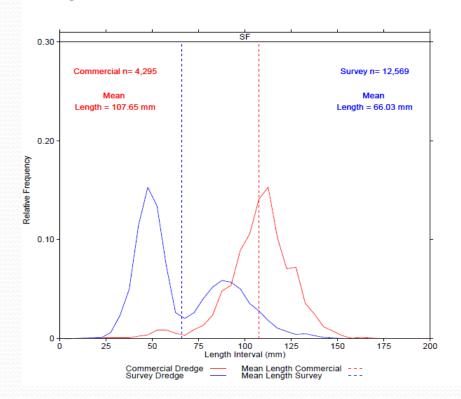

Right - Expanded Number of Scallops Caught at Length Table

2024

CAME Assa	Lammila	Commonial	C
SAMS_Area	•	Commercial	•
NLS_South_Deep	12.5	3	346
NLS_South_Deep	17.5	9	2,770
NLS_South_Deep	22.5	16	6,585
NLS_South_Deep	27.5	77	18,405
NLS_South_Deep	32.5	155	26,678
NLS_South_Deep	37.5	184	31,710
NLS_South_Deep	42.5	128	30,524
NLS_South_Deep	47.5	124	21,086
NLS_South_Deep	52.5	69	12,963
NLS_South_Deep	57.5	34	8,543
NLS_South_Deep	62.5	8	2,096
NLS_South_Deep	67.5	3	455
NLS_South_Deep	72.5	1	288
NLS_South_Deep	77.5	3	108
NLS_South_Deep	82.5	2	41
NLS_South_Deep	87.5	3	24
NLS_South_Deep	92.5	0	85
NLS_South_Deep	97.5	3	15
NLS_South_Deep	102.5	10	19
NLS_South_Deep	107.5	12	10
NLS_South_Deep	112.5	24	15
NLS_South_Deep	117.5	14	8
NLS_South_Deep	122.5	9	7
NLS_South_Deep	127.5	6	2
NLS South Deep	132.5	3	2
NLS_South_Deep	142.5	2	0

7	^	1	
Z	U	Z	5

NLS_South	17.5	0	1
NLS_South	22.5	0	1
NLS_South	27.5	19	28
NLS_South	32.5	152	44
NLS_South	37.5	702	682
NLS_South	42.5	2,308	2,979
NLS_South	47.5	5,002	9,305
NLS_South	52.5	9,292	16,29
NLS_South	57.5	11,804	27,89
NLS_South	62.5	15,174	32,75
NLS_South	67.5	17,852	34,85
NLS_South	72.5	18,201	29,56
NLS_South	77.5	16,352	21,71
NLS_South	82.5	10,206	10,94
NLS_South	87.5	5,487	3,341
NLS_South	92.5	2,134	819
NLS_South	97.5	521	308
NLS_South	102.5	201	157
NLS_South	107.5	230	168
NLS_South	112.5	279	140
NLS_South	117.5	197	121
NLS_South	122.5	164	95
NLS_South	127.5	106	80
NLS_South	132.5	82	43
NLS_South	137.5	48	20
NLS_South	142.5	18	6
NLS_South	147.5	8	1
NLS_South	152.5	1	0


SAMS_Area Length Commercial Survey

Southern Flank

VIRGINIA INSTITUTE OF MARINE SCIENCE
MARINE ADVISORY PROGRAM

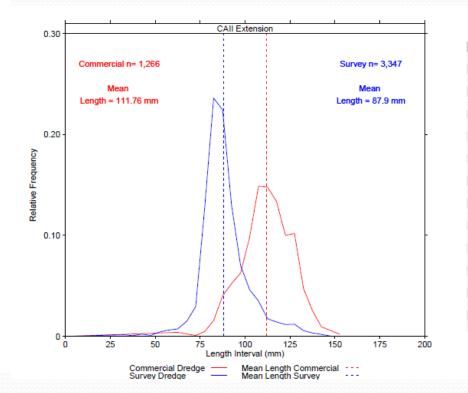
2024

Number Caught at Length by Gear Left - Relative Length Frequency Graph Right - Expanded Number of Scallops Caught at Length Table

SAMS_Area	Length	Commercial	Survey
SF	22.5	0	12
SF	27.5	4	77
SF	32.5	0	294
SF	37.5	4	627
SF	42.5	11	1,436
SF	47.5	16	1,920
SF	52.5	37	1,684
SF	57.5	37	926
SF	62.5	23	331
SF	67.5	14	256
SF	72.5	39	330
SF	77.5	57	508
SF	82.5	102	654
SF	87.5	206	738
SF	92.5	232	716
SF	97.5	384	630
SF	102.5	454	446
SF	107.5	604	351
SF	112.5	657	230
SF	117.5	438	132
SF	122.5	303	91
SF	127.5	309	52
SF	132.5	154	62
SF	137.5	106	38
SF	142.5	51	16
SF	147.5	32	8
SF	152.5	13	4
SF	157.5	2	1
SF	162.5	5	0
SF	172.5	1	0


SAMS_Area	Length	Commercial	Surve
SF	37.5	0	3
SF	42.5	0	5
SF	47.5	0	15
SF	52.5	0	12
SF	57.5	2	46
SF	62.5	0	94
SF	67.5	10	100
SF	72.5	25	186
SF	77.5	119	400
SF	82.5	338	1,151
SF	87.5	398	1,928
SF	92.5	367	1,715
SF	97.5	263	974
SF	102.5	341	490
SF	107.5	416	303
SF	112.5	427	192
SF	117.5	327	107
SF	122.5	184	62
SF	127.5	124	37
SF	132.5	65	23
SF	137.5	40	16
SF	142.5	13	8
SF	147.5	8	2
SF	152.5	3	0

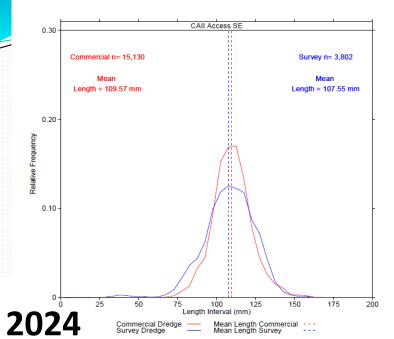
CAII - Extension



2024

Number Caught at Length by Gear Left - Relative Length Frequency Graph Right - Expanded Number of Scallops Caught at Length Table

SAMS_Area	Length	Commercial	Survey
CAII_Ext	22.5	0	1
CAII_Ext	27.5	0	27
CAII_Ext	32.5	0	108
CAII_Ext	37.5	1	212
CAII_Ext	42.5	0	431
CAII_Ext	47.5	5	448
CAII_Ext	52.5	0	228
CAII_Ext	57.5	0	88
CAII_Ext	62.5	3	62
CAII_Ext	67.5	7	53
CAII_Ext	72.5	20	150
CAII_Ext	77.5	57	209
CAII_Ext	82.5	88	332
CAII_Ext	87.5	186	549
CAII_Ext	92.5	334	580
CAII_Ext	97.5	386	644
CAII_Ext	102.5	537	527
CAII_Ext	107.5	503	361
CAII_Ext	112.5	466	234
CAII_Ext	117.5	452	151
CAII_Ext	122.5	404	161
CAII_Ext	127.5	331	112
CAII_Ext	132.5	199	35
CAII_Ext	137.5	64	22
CAII_Ext	142.5	28	15
CAII_Ext	147.5	17	0
CAII_Ext	152.5	1	0
CAII_Ext	157.5	0	1



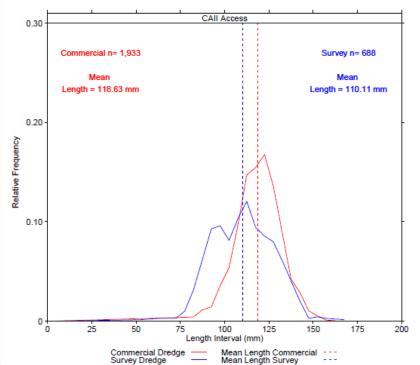
SAMS_	Area	Length	Commercial	Survey
CAII	Ext	32.5	0	5
CAII	Ext	37.5	0	2
CAIL	Ext	42.5	0	7
CAIL	Ext	47.5	0	3
CAIL	Ext	52.5	0	14
CAII	Ext	57.5	0	21
CAIL	Ext	62.5	5	24
CAII	Ext	67.5	0	50
CAIL	Ext	72.5	1	98
CAII	Ext	77.5	6	424
CAII	Ext	82.5	20	790
CAII	Ext	87.5	51	751
CAIL	Ext	92.5	66	434
CAII	Ext	97.5	79	235
CAII	Ext	102.5	124	155
CAII_	Ext	107.5	188	117
CAII	Ext	112.5	187	58
CAIL	Ext	117.5	169	48
CAII	Ext	122.5	127	39
CAII	Ext	127.5	129	40
CAII	Ext	132.5	60	19
CAII	Ext	137.5	32	11
CAIL	Ext	142.5	12	0
CAII	Ext	147.5	7	1
CAII	Ext	152.5	3	0

2024

Number Caught at Length by Gear Left – Relative Length Frequency Graph

Right - Expanded Number of Scallops Caught at Length Table

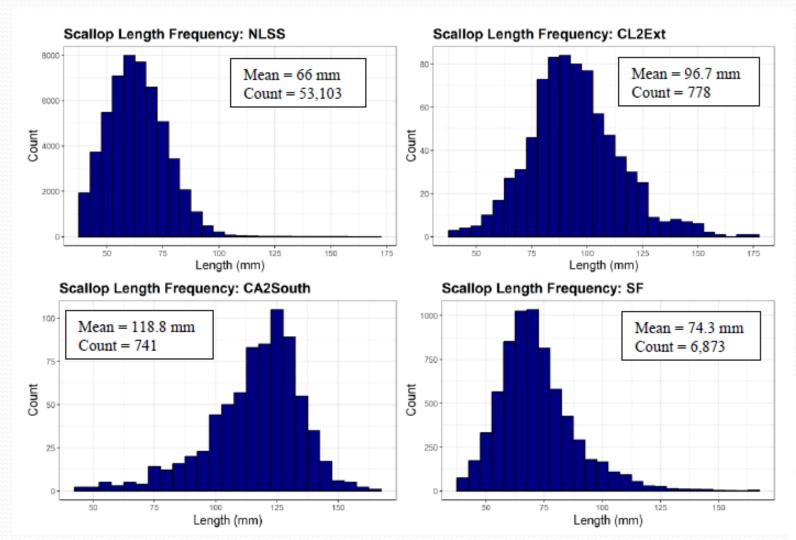
SAMS_Area	Length	Commercial	Survey
CAII_Access_SE	27.5	0	1
CAII_Access_SE	32.5	0	5
CAII_Access_SE	37.5	0	10
CAII_Access_SE	42.5	0	8
CAII_Access_SE	47.5	0	4
CAII_Access_SE	52.5	0	4
CAII_Access_SE	57.5	0	2
CAII_Access_SE	62.5	4	3
CAII_Access_SE	67.5	8	13
CAII_Access_SE	72.5	30	33
CAII_Access_SE	77.5	105	82
CAII_Access_SE	82.5	192	137
CAII_Access_SE	87.5	494	166
CAII_Access_SE	92.5	675	237
CAII_Access_SE	97.5	1,408	377
CAII_Access_SE	102.5	2,306	450
CAII_Access_SE	107.5	2,551	476
CAII_Access_SE	112.5	2,572	465
CAII_Access_SE	117.5	2,006	448
CAII_Access_SE	122.5	1,189	332
CAII_Access_SE	127.5	675	273
CAII_Access_SE	132.5	386	162
CAII_Access_SE	137.5	227	68
CAII_Access_SE	142.5	163	25
CAII_Access_SE	147.5	51	11
CAII_Access_SE	152.5	44	5
CAII_Access_SE	157.5	31	4
CAII_Access_SE	162.5	7	1
CAII_Access_SE	167.5	6	0

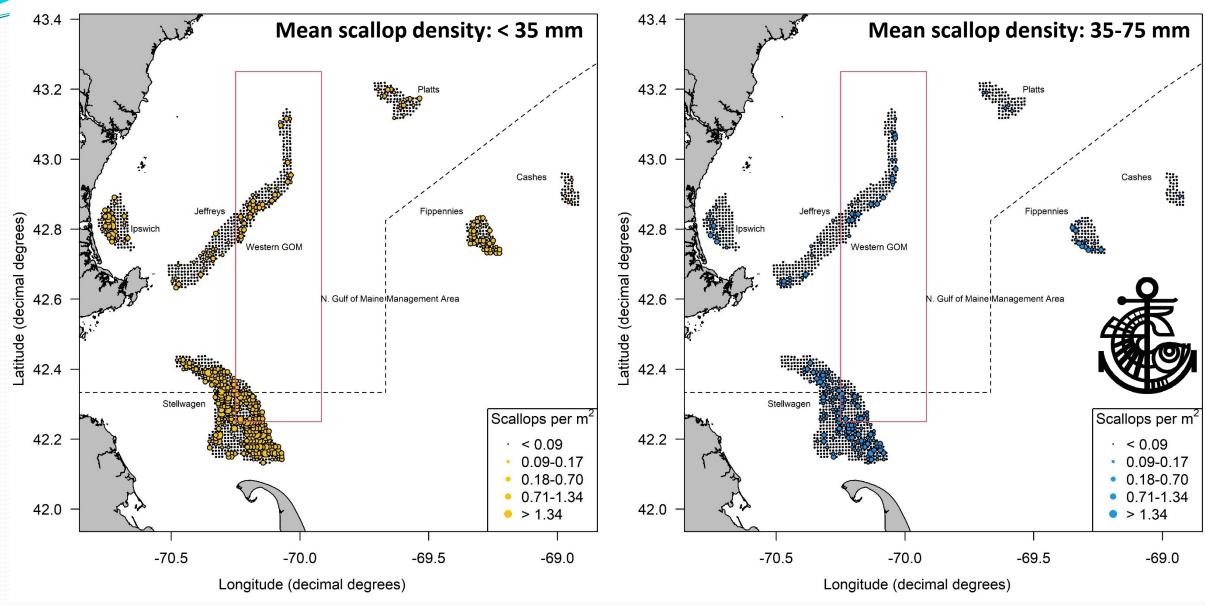

0.30 Commercial n= 971 Mean Length = 124.59 mm Length = 112.87 mm 0.10 CAll Access SW Mean Length = 112.87 mm

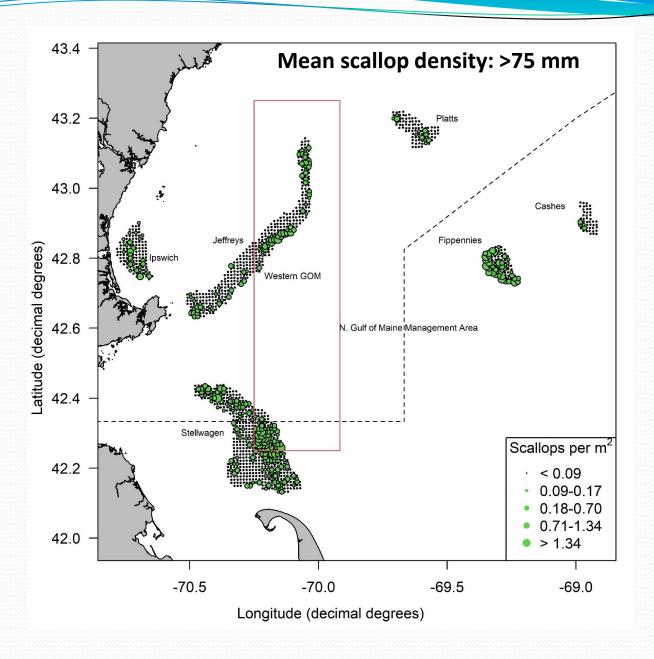
Commercial Dredge — Mean Length Commercial --Survey Dredge — Mean Length Survey ---

SAMS_Area	Length	Commercial	Survey
CAII_Access_SW	47.5	0	2
CAII_Access_SW	52.5	0	12
CAII_Access_SW	57.5	0	22
CAII_Access_SW	62.5	0	17
CAII_Access_SW	67.5	1	14
CAII_Access_SW	72.5	1	9
CAII_Access_SW	77.5	0	13
CAII_Access_SW	82.5	1	11
CAII_Access_SW	87.5	4	18
CAII_Access_SW	92.5	3	17
CAII_Access_SW	97.5	9	23
CAII_Access_SW	102.5	20	38
CAII_Access_SW	107.5	62	40
CAII_Access_SW	112.5	100	56
CAII_Access_SW	117.5	134	66
CAII_Access_SW	122.5	137	91
CAII_Access_SW	127.5	163	103
CAII_Access_SW	132.5	139	81
CAII_Access_SW	137.5	102	56
CAII_Access_SW	142.5	43	22
CAII_Access_SW	147.5	23	12
CAII_Access_SW	152.5	19	2
CAII_Access_SW	157.5	5	2
CAII_Access_SW	162.5	3	0
CAII_Access_SW	167.5	1	0
CAII_Access_SW	172.5	1	0

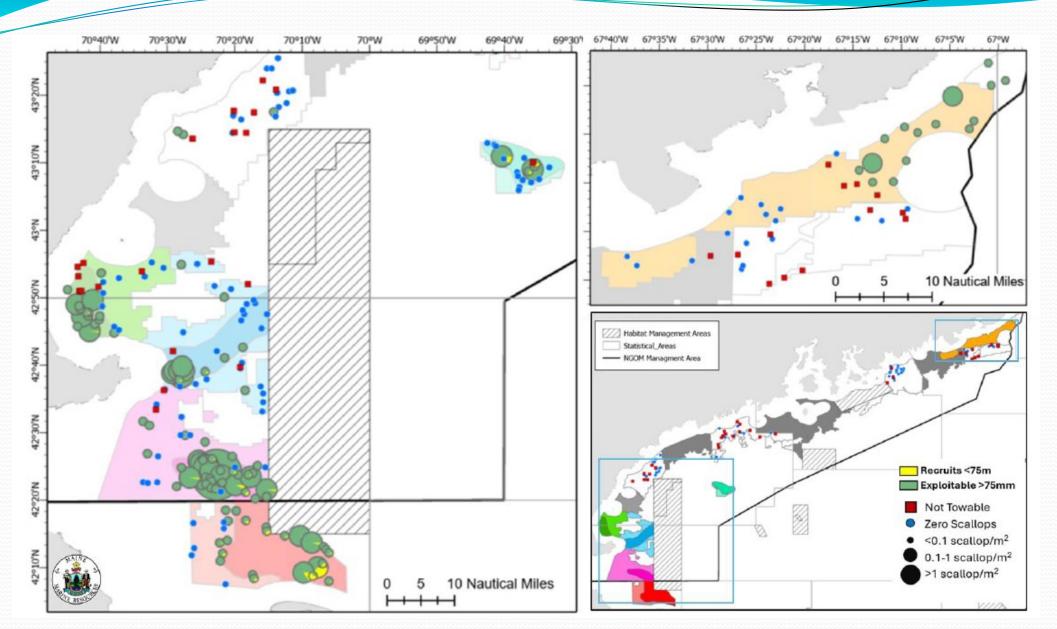
CAII-Access

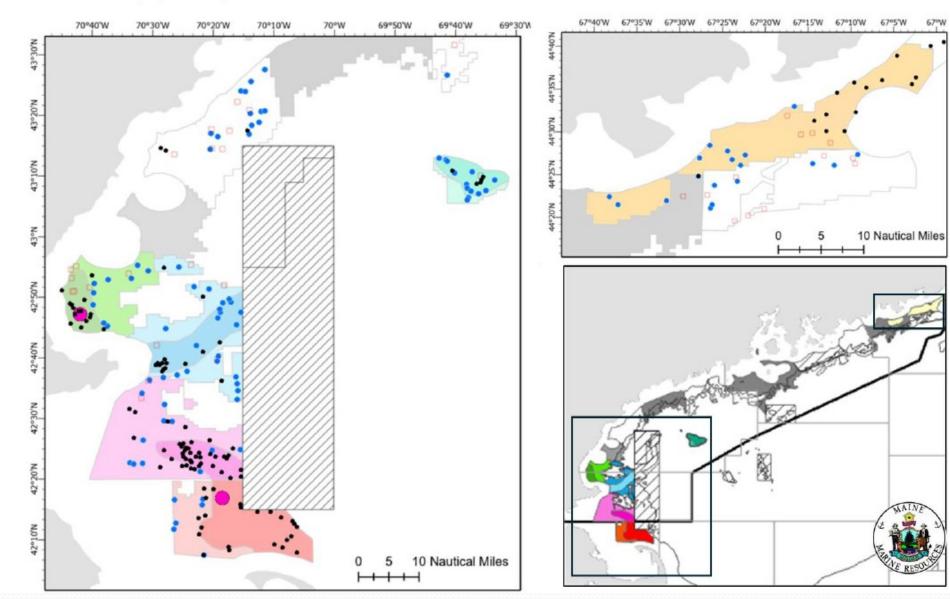


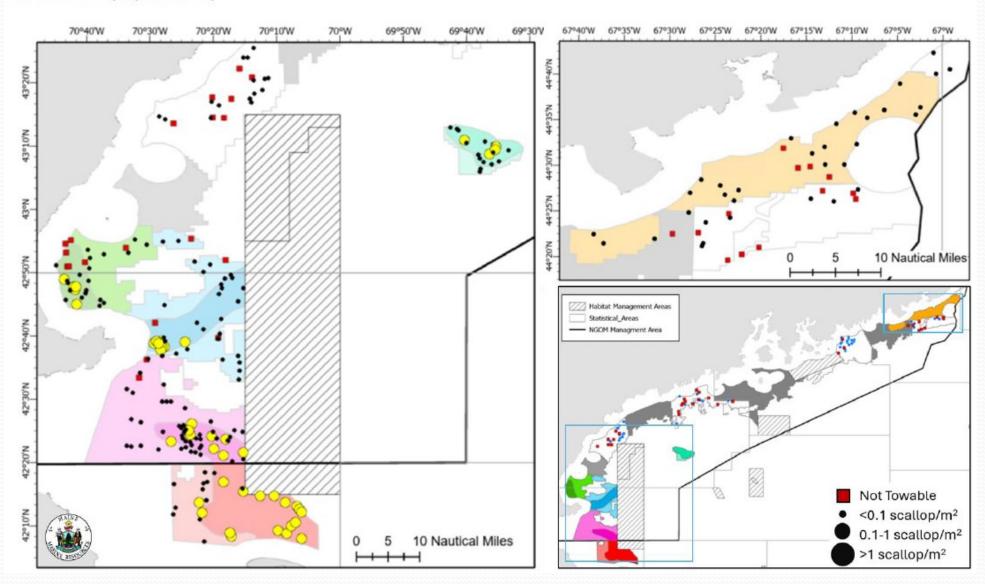

SAMS_Area	Length	Commercial	Survey
CAII_Access	52.5	0	1
CAII_Access	62.5	0	2
CAII_Access	72.5	0	2
CAII_Access	77.5	0	7
CAII_Access	82.5	8	22
CAII_Access	87.5	22	43
CAII_Access	92.5	28	64
CAII_Access	97.5	70	66
CAII_Access	102.5	104	56
CAII_Access	107.5	187	71
CAII_Access	112.5	284	83
CAII_Access	117.5	299	65
CAII_Access	122.5	324	59
CAII_Access	127.5	263	55
CAII_Access	132.5	173	42
CAII_Access	137.5	82	28
CAII_Access	142.5	56	14
CAII_Access	147.5	20	2
CAII_Access	152.5	10	3
CAII_Access	157.5	2	2
CAII_Access	162.5	1	0
CAII_Access	167.5	0	1



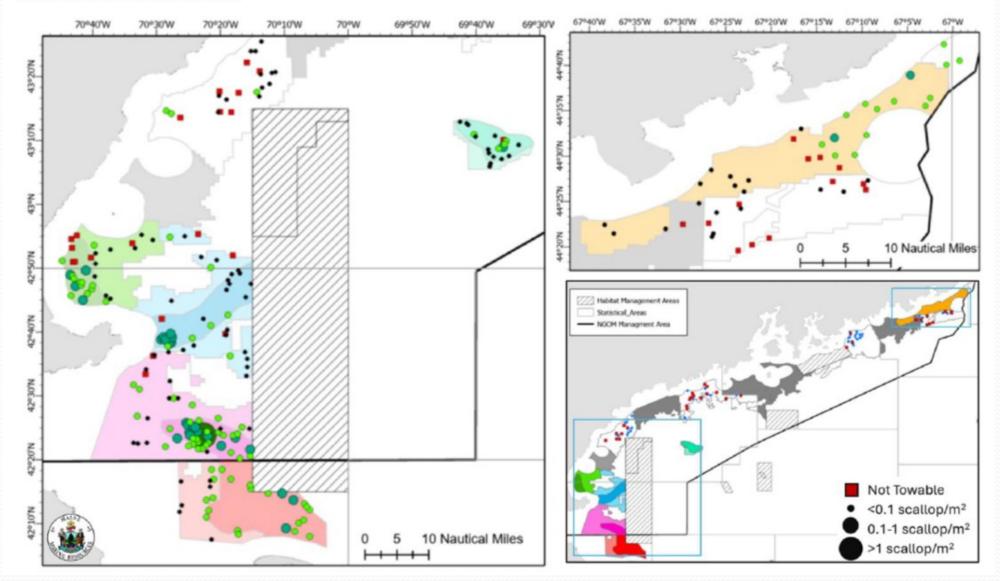
VIRGINIA INSTITUTE OF MARINE SCIENCE MARINE ADVISORY PROGRAM



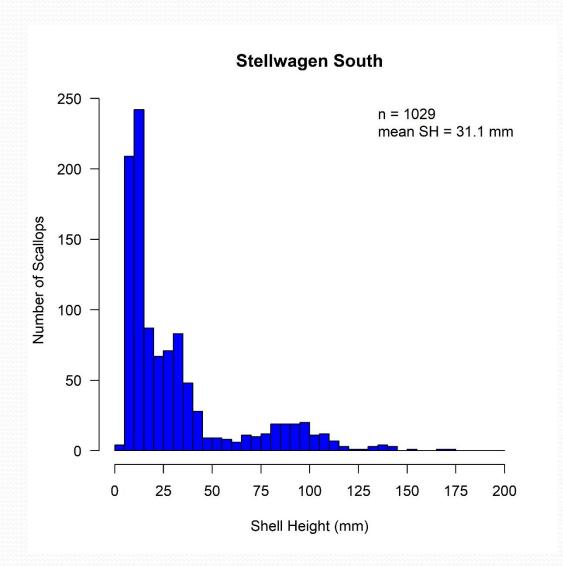




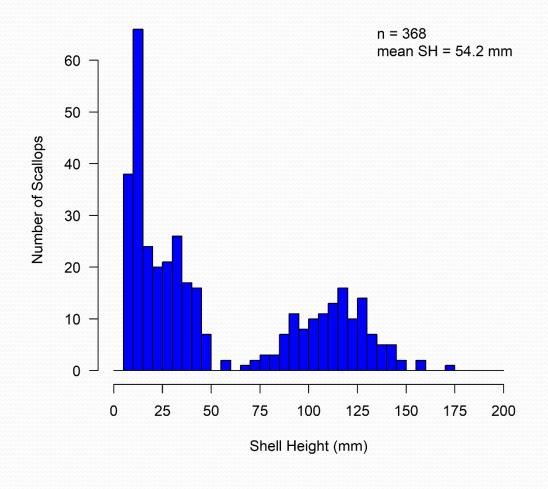
Pre-Recruit Scallops (<35mm)

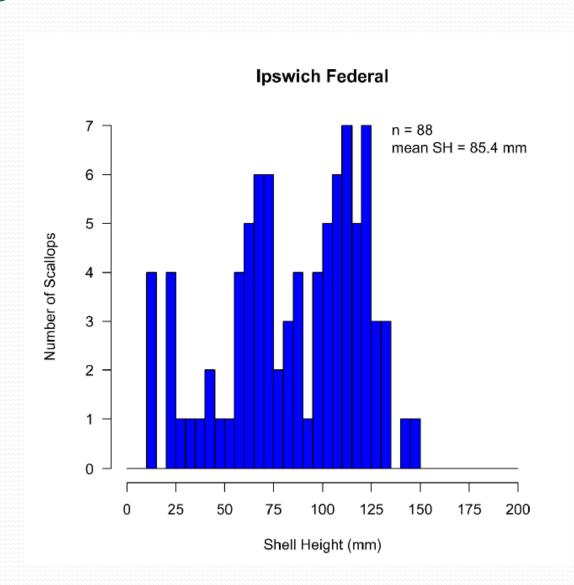


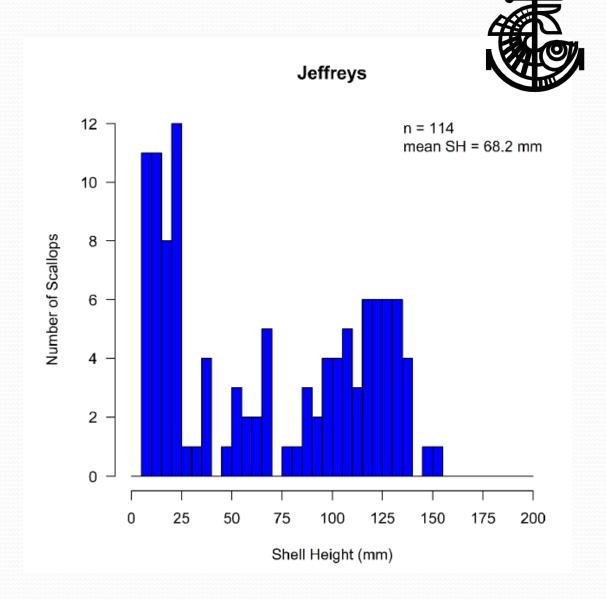
Recruit Scallops (35-75mm)

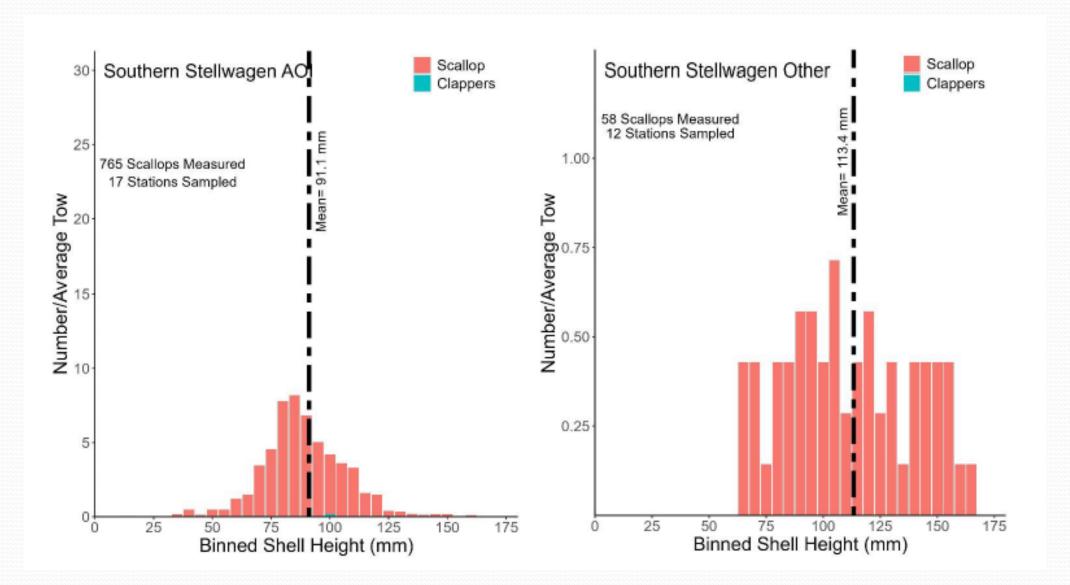


Exploitable Scallops (>75mm)

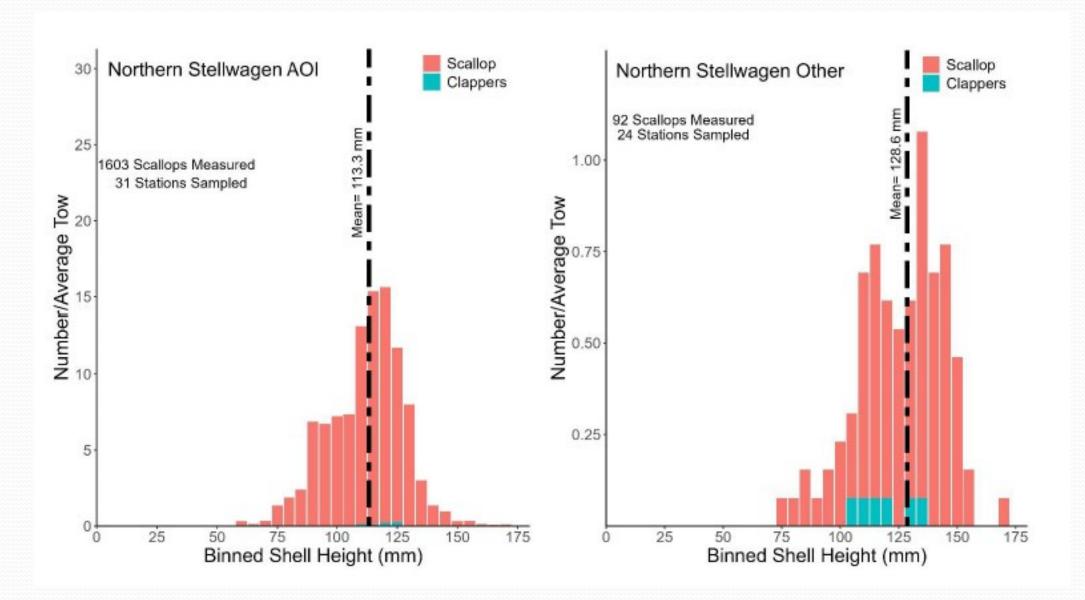


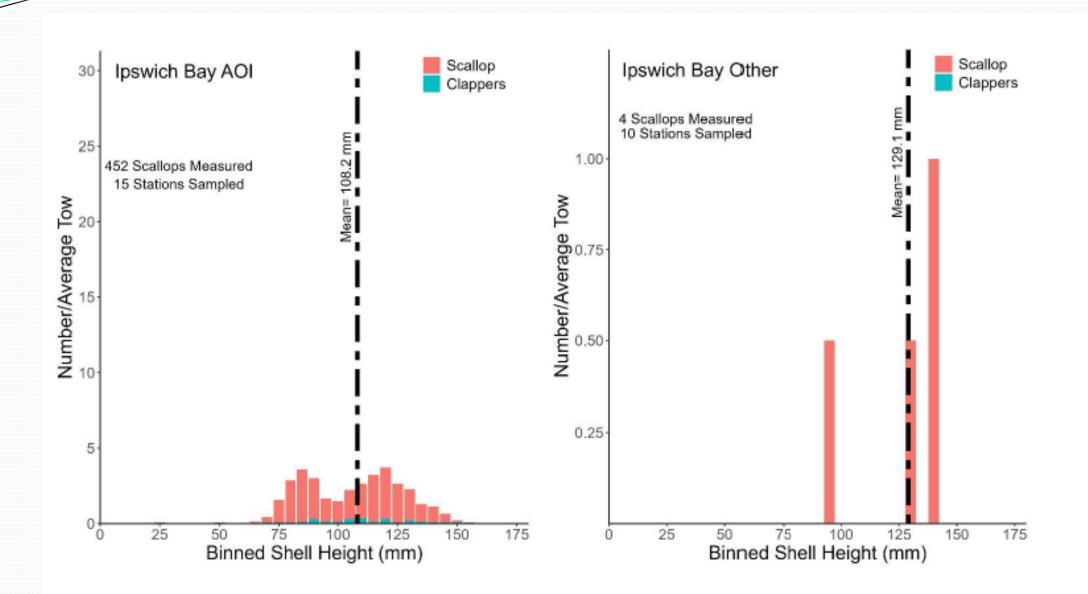


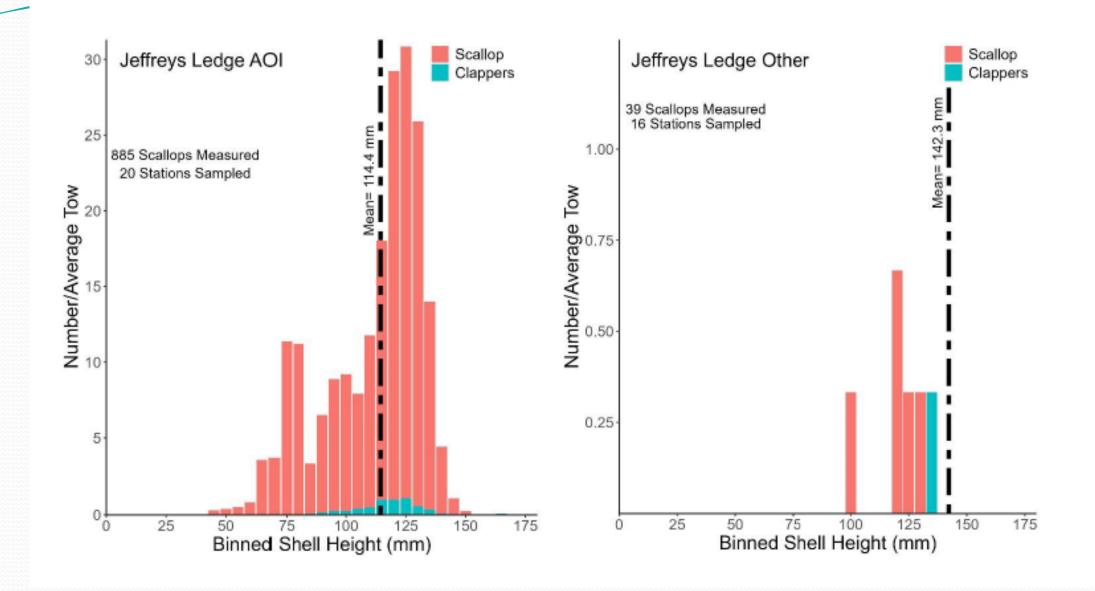


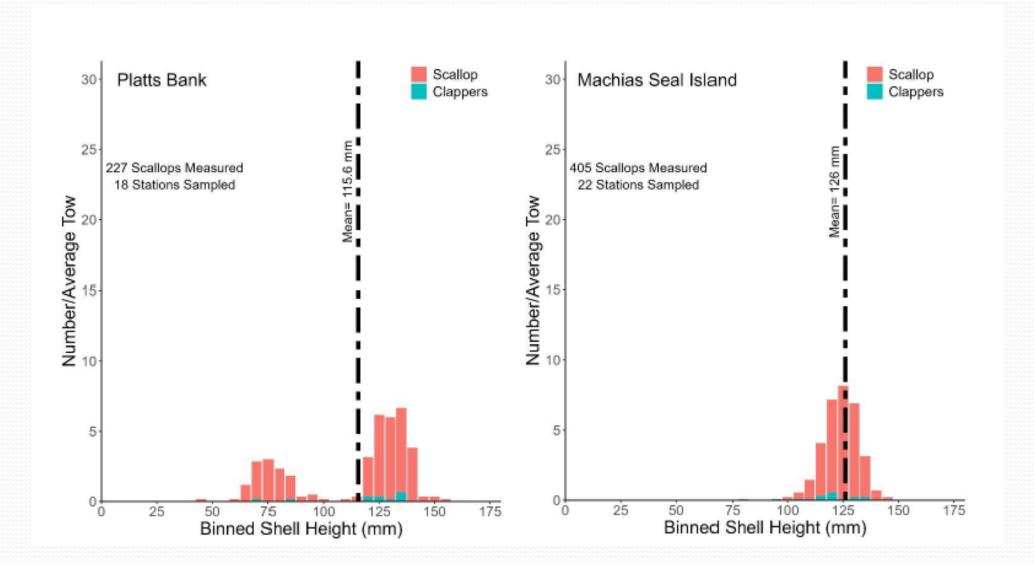


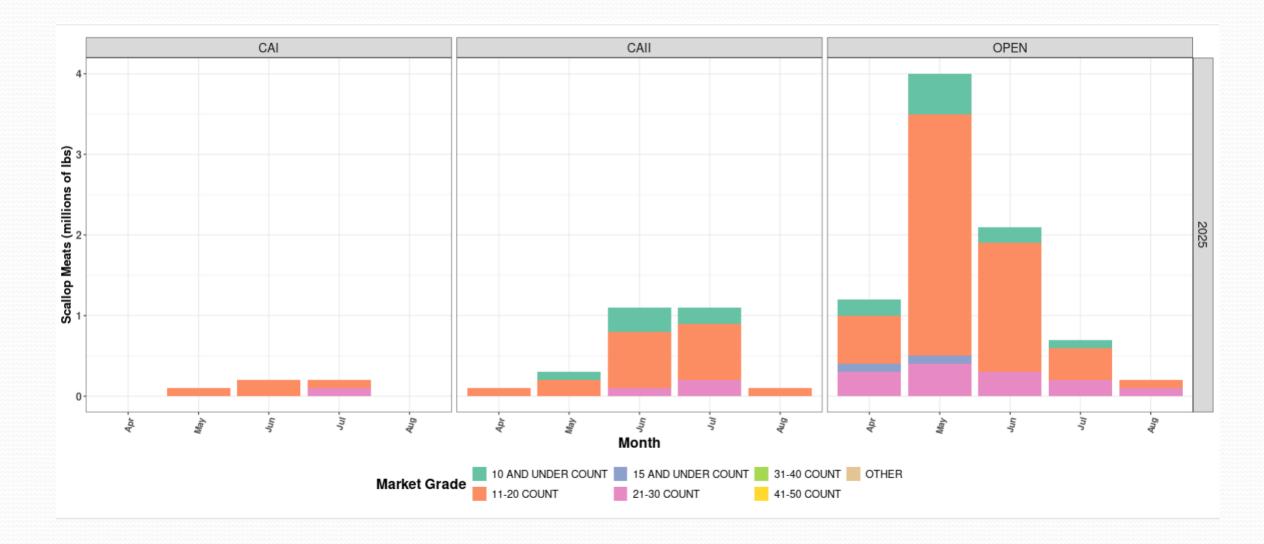
Stellwagen NGOM

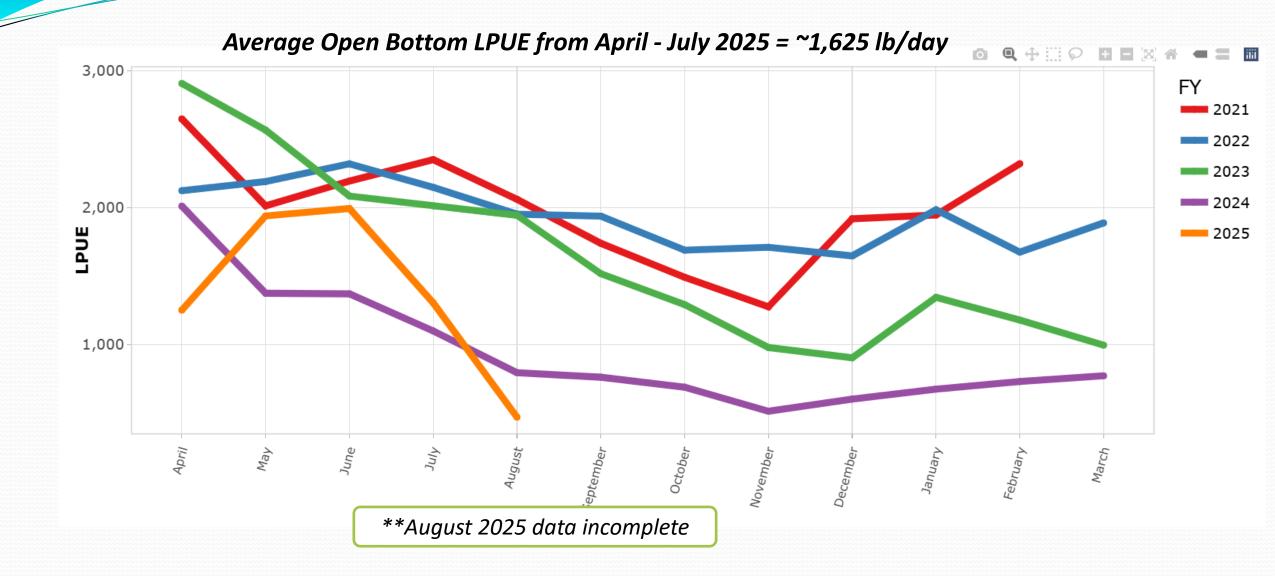


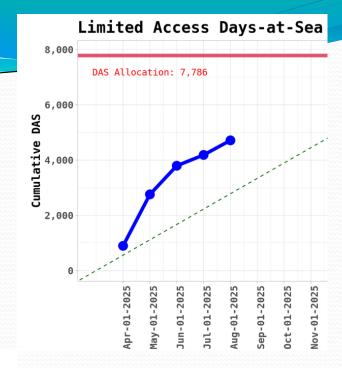


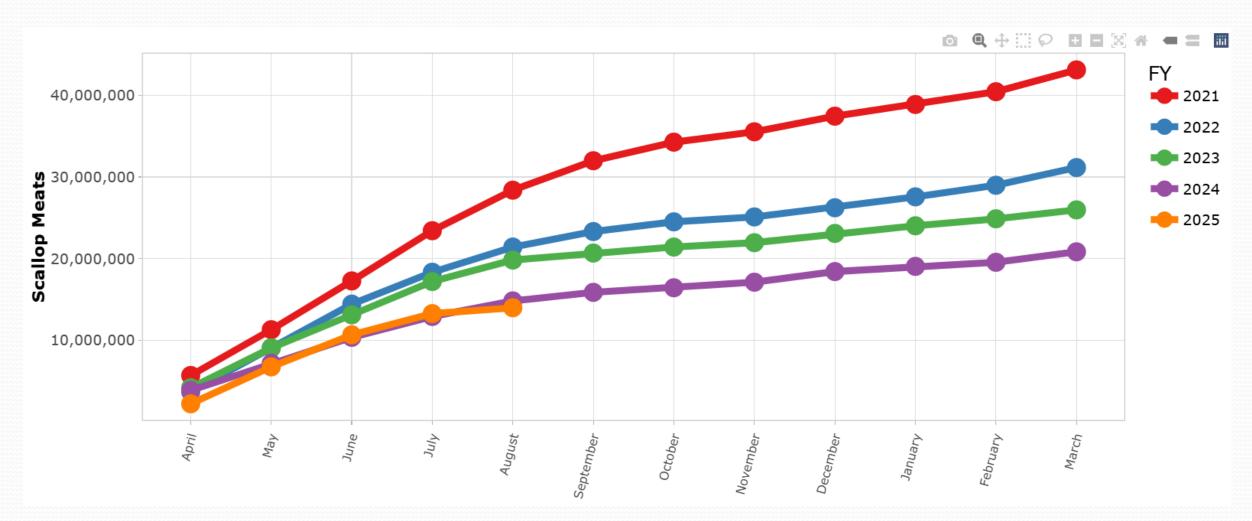











Limited Access sub-ACL

	OPEN	CAI	CAII	NYB	MONTHLY TOTAL	CUMULATIVE TOTAL	% OF SUB-ACL (35,031,453 lb)	% OF APL (17,041,733 lb)	Observer Set Aside
April	1,077,106	0	118,113	141,786	1,337,005	1,337,005	3.82%	7.85%	19,790
May	3,582,982	172,390	326,420	107,205	4,188,997	5,526,002	15.77%	32.43%	48,649
June	2,034,198	187,967	1,043,464	278,363	3,543,992	9,069,994	25.89%	53.22%	44,767
July	499,023	59,677	1,149,568	496,367	2,204,635	11,274,629	32.18%	66.16%	43,732
August	394,318	0	291,313	249,291	934,922	12,209,551	34.85%	71.65%	3,292
TOTAL	7,587,627	420,034	2,928,878	1,273,012	12,209,551				160,230

Limited Access General Category sub-ACL

	OPEN	CAI	CA II	NGOM	MONTHLY TOTAL (ACL)	CUMULATIVE TOTAL (ACL)	% OF SUB- ACL (1,854,088 Ib)	CUMULATIVE TOTAL (APL)	% APL (901,691 lb)	Observer Set Aside
April	34,325	199	0	232,571	34,524	34,524	1.86%	267,095	29.62%	3,900
May	118,007	26,945	0	0	144,952	179,476	9.68%	412,047	45.7%	1,400
June	43,648	133,075	0	0	176,723	356,199	19.21%	588,770	65.3%	2,800
July	42,050	123,769	0	0	165,819	522,018	28.15%	754,589	83.69%	3,100
August	21,713	51,160	0	0	72,873	594,891	32.09%	827,462	91.77%	500
TOTAL	259,743	335,148	0	232,571	594,891					11,700

August 19 SSC Meeting

TERMS OF REFERENCE

- A. Consider the results of the 2025 research track assessment for Atlantic sea scallops and information provided by the Council's Scallop Plan Development Team (PDT) on developing specifications considering biological reference points.
- B. Provide recommendations related to fishing mortality reference points and targets for developing specifications for fishing year (FY) 2026 and default FY 2027. The SSC will review catch specification methods when recommending overfishing limits (OFL) and acceptable biological catch (ABC) at the October 2025 SSC meeting.
- Presentation from Dvora on 2025 Research Track Assessment and from Connor on Scallop PDT discussion on the use of combined stock reference points

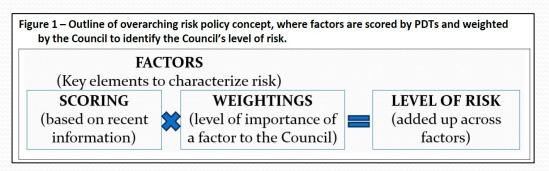
SSC Considerations and Questions

- Are the reference points appropriate for use in management specifications? How should we be considering the elevated uncertainty associated with the combined reference point?
- SSC was interested in seeing projections under Options 1 (default), 2 (bookend) and 3 (sensitivity)
 - Understood the mismatch between higher F_{MSY} in the Mid-Atlantic vs. higher realized F on Georges Bank.
 - Recommended several options for ABCs to bring to October 8th meeting for consideration
 - How well do various ABCs constrain fishing mortality?

SSC Recommendations for PDT for Oct 8.

- OFL and ABC using Scallop ABC Control Rule
 - $F_{OFI} = 0.49$ and $F_{ABC} = 0.36$
- 2. OFL and ABC using Georges Bank reference points
 - $F_{OFL} = 0.36$ and $F_{ABC} = 0.29$
- 3. OFL and ABC using modified p*
 - F_{OFL}=0.49 and F_{ABC}= F_{20% probability of overfishing}
- Based on GARFO input, Option 2 and 3 are viable within a Framework but would require modifying ABC control to allow SSC to deviate from ABC control rule, per National Standard 1.
 - Requires Committee to add measure to Framework 40 in September
- Need to assess the degree to which Option 2 and 3 constrain catch.
 - If negligible effect, may not be worth considering measures for Framework 40.

Strategic Plan


 At their September meeting, Scallop AP and Committee will provide input on prioritization, timing, and sequencing of the Strategic Plan.

For today:

- Input on research needs and challenges
- Input on prioritization of various objectives or strategies
- Input on work load and timing
- Input on batching and sequencing similar priorities to promote efficiency

NEFMC Revised Risk Policy

- The goal of the Council's Risk Policy is to implement a process by which the Council, and its subordinate bodies, accounts for the fact that all fishery management is based on uncertain information, fisheries and the surveys used to monitor marine resources are taking place in a changing environment, and that the decisions of the Council have social and economic impacts on fishing communities.
 - Provide guidance to the Council and its subordinate bodies on taking account of risk and uncertainty in Fishery Management Plans and specification-setting;
 - 2. Clearly communicate the priorities and preferences of the Council regarding risk and uncertainty, including using a common set of terms and definitions so it is accessible to a wide variety of audiences; and
 - 3. Make the discussion of risk tolerance in the Council's decisions a more forward and fundamental aspect of the management process to support its consistent application.

Stock Status and Uncertainty

- Biomass stock status (current productivity)
- Recruitment (future productivity)
- Assessment type and uncertainty

Climate and Ecosystem Considerations

- Climate vulnerability
- Fish condition (ecosystem productivity)

Economic and Community Importance

- Commercial fishery characterization
- Recreational fishery characterization

Risk Policy Use and Development

- New Risk Policy became effective on January 1, 2025.
- Two phases (use and development) are happening concurrently.

USE – ALPHA Phase

- Risk Policy Concept as approved in Sept. 2024.
- Statement and Stability.
- 7 factors, and guidelines.
- Risk Policy matrix completed by PDTs.
- Qualitative application.

Development – BETA Phase

- Simulation testing.
- Weightings exercise.
- Incorporate input.
 Adjustments to factors
 and data.
- Connection to harvest control rules.
- Quantitative application for 2027.

Risk Policy Use and Development

Alpha Phase

- In 2025 and 2026, use of the Risk Policy focus on assembly of data for the Risk Policy Matrix. At this time, there is no scoring of factors.
- Aiming for consistent application, and delivery (especially to the SSC). Alpha should look and feel similar to the approach the Council used with the last Risk Policy, but with a different set of data assembled for the matrix.

Beta Phase

- The Beta Phase responds to the Council's tasking to continue to refine elements of the concept while the Risk Policy is in use (Alpha Phase).
- Beta phase is expected to include updates to the Risk Policy factors and guidelines for scoring (e.g. questions, data), weighting of factors by the Council, outcomes from the simulation testing, and the linkage of the Risk Policy with updated groundfish ABC control rules. These changes are anticipated to occur no earlier than 2026.

Upcoming Meeting/Milestones:

- September 5, 2025 Scallop PDT review survey results, FW39 (Webinar)
- September 12, 2025 Joint Scallop PDT/ AP meeting (Webinar)
- September 15, 2025 Scallop Committee meeting (Webinar)
- September 24, 2025 Scallop Report, Council meeting (Gloucester, MA)
- TBD Scallop PDT calls to finalize report to SSC (Webinar)
- October 8, 2025 Science and Statistical Committee meeting (Boston, MA)