Document 3b: Key Characteristics of Ecosystem Models and Supporting Analyses Applied to Northeast Region Marine Species | | Key characteristics | | | | | | | | | |---|---|--------------|---|------------------------------|---|--|--|---------------------------------------|--| | Model/Presenter | Model type | EPU | Species
included in
model | Ecosyste m reference points? | Catch
advice and
scientific
uncertainty
? | Spatial scales
and
demographics
? | Data needed
and
assumptions
? | MSE and backtesting or verification ? | | | End to end
modeling using
Atlantis (Gamble) | Food web
dynamics;
strategic advice | Georges Bank | 45 functional species groups; 18 fishing fleets | Maybe | No/no | No | Lots | Yes | | ¹ Summary presentations of models available at: Sharepoint\Ecosystem Based Fishery Manag - Sha\Ecosystem models Key Characteristics of Ecosystem Models [1] EBFM PDT | | Key characteristics | | | | | | | | | |---|--|--------------|--|------------------------------|---|-----------------------------------|-----------------------------|---------------------------------------|--| | Model/Presenter | Model type | EPU | Species
included in
model | Ecosyste m reference points? | Catch advice and scientific uncertainty ? | Spatial scales and demographics ? | Data needed and assumptions | MSE and backtesting or verification ? | | | Technical
summary of
multispecies
statistical catch at
age models and
their application
on the NEUS
continental shelf
(Curti) | Multispecies VPA
& statistical catch
at age; strategic
and tactical | Georges Bank | (9) White hake, spiny dogfish, winter skate, goosefish, cod, silver hake, pollock, Atlantic herring, Atlantic mackerel; 27 predator/pre y interactions | Partial | YES | NO | Considerable | No | | | Application of a multispecies statistical catch at age model assess the productivity and ecosystem reference points for Atlantic menhaden (McNamee) | Multispecies VPA
& statistical catch
at age; strategic
and tactical | Mid-Atlantic | Atlantic menhaden, striped bass, scup, shrimp, crustaceans, spot, croaker, butterfish, bluefish, other alosids | Partial | YES | NO | Considerable | No | | | | Key characteristics | | | | | | | | | | |--|--|-----------------------------------|---------------------------------|-------------------------------|---|-----------------------------------|-------------------------------|---------------------------------------|--|--| | Model/Presenter | Model type | EPU | Species
included in
model | Ecosyste m reference points ? | Catch
advice and
scientific
uncertainty
? | Spatial scales and demographics ? | Data needed and assumptions ? | MSE and backtesting or verification ? | | | | A habitat model-
based method to
estimate stock
availability to
surveys that can
be incorporated in
stock assessments
(Manderson) | Thermal habitat | Mid-Atlantic
& Georges
Bank | Butterfish | NO | NO | YES | Moderate | YES | | | | Indicator Approaches for EBFM on the Northeast Shelf (Smith) | Not presented to PDT | | | | | | | | | | | Spatial Processes
in the EcoPath
with Ecosim
Modeling
Framework
(Lucey) | Mass balance
biomass/energetic
s based model | Coastwide; 4 regions | Highly
aggregated
groups | NOT YET | NO | NO | Lots | NO | | | | | Key characteristics | | | | | | | | | |--|--|---|--|-------------------------------|---|-----------------------------------|------------------------------------|---------------------------------------|--| | Model/Presenter | Model type | EPU | Species
included in
model | Ecosyste m reference points ? | Catch advice and scientific uncertainty ? | Spatial scales and demographics ? | Data needed and assumptions | MSE and backtesting or verification ? | | | Application of Ecopath and Ecosim models to the Gulf of Maine American lobster ecosystem (Zhang) | Mass balance
biomass/energetic
s based model | Gulf of Maine | Lobster, cod, Atlantic herring, Wolfish, Skates, shrimp, squid, silver hake, red hake, cunner, cusk, tautog, other fish, crustaceans | NO | YES | YES | Lots; mostly
from
literature | NO | | | Modeling and
Analysis of
Lower Trophic
Level Dynamics
(Friedland) | Not presented to PDT | | | | | | | | | | Ecosystem production potential of the Northeast U.S. Continental Shelf | Energy transfer model | Mid-Atlantic
to Gulf of
Maine and
Georges Bank | Large
functional
groups | YES | YES | NO | Broad scale | NO | | | | | | Ke | ey chara | cteristics | <u> </u> | | | |--|--|--------------|--|-------------------------------|---|-----------------------------------|-------------------------------|---------------------------------------| | Model/Presenter | Model type | EPU | Species
included in
model | Ecosyste m reference points ? | Catch advice and scientific uncertainty ? | Spatial scales and demographics ? | Data needed and assumptions ? | MSE and backtesting or verification ? | | Application of portfolio analysis for EBFM (DePiper) | Portfolio theory;
minimize risk and
variance; NEUS
Altantis | Georges Bank | Goosefish, cod, winter flounder, yellowtail flounder, haddock, Atlantic herring, Atlantic Mackerel, winter skate, silver hake, spiny dogfis | YES, risk
based | YES | YES | Complex | Not yet | | Management Strategy Evaluation (Gaichas) "Hydra"/"Kraken " | Production model | Georges Bank | Spiny dogfish, winter skate, Atlantic herring, cod, haddock, yellowtail flounder, winter flounder, Atlantic mackerel, silver hake, goosefish | YES | YES | YES | Considerable | YES | | | Key characteristics | | | | | | | | | | |---|---|--------------|---------------------------------|-------------------------------|---|--|-------------------------------|---------------------------------------|--|--| | Model/Presenter | Model type | EPU | Species
included in
model | Ecosyste m reference points ? | Catch advice and scientific uncertainty ? | Spatial scales
and
demographics
? | Data needed and assumptions ? | MSE and backtesting or verification ? | | | | Empirical
dynamical
modeling for
EBFM (Perretti) | Non-parametric
stepwise time-
series analysis | Georges Bank | All with catch data | MAYBE | MAYBE | YES | Less | YES | | | The following models focus on predicting effects of climate change on the physical oceanography and/or the biology or population dynamics of marine species. By themselves, they do not provide sufficient advice for managing total removals of marine species to achieve optimum yield. They are however supportive of such models that do so and provide advice about how marine systems are likely to respond to increasing water temperatures, declining pH, and/or changes in circulation or seasonality. As such, they are important model components in any EBFM framework and toolkit. | High resolution
climate modeling
for EBFM (Saba) | Climate change
forecasting –
model designed to
forecast climate
changes which
may be applied to
ecosystem
predictions | NW Atlantic | None | NA | NA | YES | Considerable | YES | |--|--|--|-----------------------|----|----|----------------|----------------------------------|----------------------------------| | Modeling
climate-mediated
distributional
shifts (Kleisner) | GAMS habitat
suitability;
temperature,
depth | Gulf of Maine/George s Bank and Mid-Atlantic bight | Large fish by species | NA | NA | Spatial scales | Survey
catches | YES,
training and
test set | | Regime shifts on
the Northeast
U.S. Continental
Shelf (Morse) | Bloom analysis
and zooplankton
distribution | Gulf of Maine
to Mid-
Atlantic bight | Zooplankton | NA | NA | Spatial scales | Zooplankton
survey
catches | NO |