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NRHA Modeling Approach and Methods Overview 

Updated May 25, 2022 

Basic Rationale/Considerations 

Our goal was to develop a comprehensive habitat modeling framework that could 1) be used to assess 

historical patterns of habitat use for marine species on the Northeast Shelf, and 2) be adapted to 

generate long-term projections of habitat use based on projected future climate scenarios. 

While traditional species distribution models (SDMs) explain patterns of habitat use as a function of 

environmental predictors, other factors such as biotic interactions can give rise to correlations in the 

occurrence or abundance of species that are not explained by the environment.  By modeling species 

environmental responses as well as their “residual” covariances in space and time, spatiotemporal joint 

SDMs (JSDMs) offer benefits over traditional, single species models that do not attempt to control for 

these factors.   These gains can include less biased estimates of species environmental responses and/or 

the uncertainty around them, the pooling of information across species to improve parameter 

estimation (i.e., borrowing strength) and the resolution of underlying or “latent” gradients, and the 

option to predict joint occurrences and/or condition upon the occurrence states or abundances of other 

species, producing more realistic predictions of species assemblages.  Finally, the residual correlations 

estimated by JSDMs (and/or the partial correlations derived from them) may provide insights on 

potentially important ecological processes, such as biotic interactions or unmeasured “missing” 

predictors. 

Because basic ecological requirements, species interactions, and habitat use patterns can vary over 

ontogeny, we chose to model adults and juveniles of each species as distinct groups, based on length at 

maturity (when data was available). 

Due to the dynamic nature of the marine environment, whenever possible we used time-varying 

measurements for covariates.   Rather than including depth as a covariate, we instead sought to 

incorporate more ecologically-relevant correlates of depth, such as gradients in hydrodynamic stress or 

in the quality of  underwater light, which can be linked mechanistically to organismal function. 

Community-level basis function model (CBFM) – a novel approach to joint SDMs 

Most existing implementations of joint SDMs represent adaptations of the latent variable model (LVM; 

Warton et al. 2015, Hui 2016, Ovaskainen et al. 2016) and employ a Bayesian framework that depends 



2 
 

on computationally expensive Markhov chain Monte Carlo (MCMC) sampling for parameter estimation.  

This computational burden is compounded in a spatio-temporal context, where the estimation of 

spatially and/or temporally structured latent fields means that model complexity scales rapidly with the 

number of observational units.  As such, fitting spatiotemporal JSDMs to large datasets (such as ours) 

can involve processing times that make this approach largely impractical.   

We (with collaborator Dr. Francis Hui at Australian National University and others) developed a novel 

approach to fitting JSDMs, the community-level basis function model (CBFM). In lieu of spatially 

structured latent variables, CBFM employs a pre-specified set of fixed spatial (and/or temporal) basis 

functions that are common (i.e., shared) across all species.   Species’ covariances in space, time, and 

with each other are then modeled via their respective basis function coefficients (i.e., weights or 

loadings), which are treated as random slopes drawn from a common distribution.   This approach can 

be seen as a parallel of LVM but offers several advantages, including better scaling for datasets with 

many observations, because the “randomness” is integrated at the species, instead of observation, level.  

Additionally, the basis function approach relaxes assumptions about stationarity, so that the strength of 

correlations between two points in spacetime is not just a function of their distance from one another, 

but also their specific locations. Moreover, because the basis function approach is closely related to 

generalized additive models (GAMs), CBFM can model species responses to covariates as smooth terms, 

whereas most existing JSDM frameworks are limited to linear or quadratic/polynomials.  This was 

particularly convenient in the context of NRHA, where the flexibility and data-driven nature of GAMS 

had made them a method of choice for single-species models, and permitted straightforward 

comparisons of the two.  REFER TO CBFM MS for additional information…… 

 

Biological response data 

We examined abundance data from the NMFS Spring & Fall Bottom trawl surveys for the time period 

between 2000-2019.  This limited timeframe was selected because: (1) recent patterns of habitat use 

are likely the most informative/relevant for identifying habitat suitability at present or in the future, 

and, (2) prior to this period, data for many satellite-derived covariates are not available.  For assessing 

out-of-sample predictive performance, the dataset was split, with 15 years used for training (2000-2014) 

and 5 years held out for testing (2015-2019).  The model(s) included response data for NRHA species of 
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interest, as well as other dominant community constituents (i.e., those with high rates of occurrence) 

and taxa thought to constitute important prey for species of interest, based on the literature. 

While calibration factors have been estimated (i.e., Miller et al. 2010) to account for the 2009 change in 

vessel and sampling gear from the RFV Albatross IV to the RFV Henry Bigelow, they do not exist for all 

species and are rarely stage specific.  Moreover, in the case of presence-absence models, the calibrated 

data can induce false “absences” in samples where species were in fact present.  To circumvent these 

issues, we used raw (un-calibrated) count data, estimating a species-specific (and stage-specific where 

appropriate) “VESSEL” effect to attempt to control for the gear change.   

Stage-specific counts were generated using length information collected during the surveys along with 

estimated length at maturity data (L50s) collected from the literature. For a given tow, each observed 

length-class bin was classified as either “adult” or “juvenile”, and then the counts for each applicable 

length-class bin were summed for each life stage.  Finally, the proportion of measured individuals 

comprising each life stage was multiplied by the total abundance of each species to obtain stage-specific 

abundances. 

When maturity information was not available for a given species, all individuals were treated as a single 

group.   Likewise, if either life stage of a species had fewer than 500 nonzero counts, the two stages 

were pooled into a single group.  Species with fewer than 500 nonzero counts altogether (i.e., across 

stages) were not considered in the model.  Species were also assigned to functional groups based on 

water column use (i.e., demersal, pelagic, or benthic in the case of epifaunal or infaunal invertebrates). 

 

Basic modeling framework 

Because some species overlap in their use of demersal and pelagic habitats, members of both functional 

groups were combined in a single model.   However, discrete models for demersal and pelagic 

communities are also being considered and would permit covariate sets to be more custom-tailored for 

each group (as the number of covariates that can be considered simultaneously in the model is limited).  

At present, the model includes 97 different species-stages.  Benthic invertebrates (primarily molluscs 

and crustaceans) have not been included in the present model fits but will be added in future runs. 

We also opted to combine the Spring and Fall survey data in a single model (instead of modeling each 

season separately).  This was based on the reasoning that species’ niches would be more completely 
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represented by observations spanning a broader range of environmental conditions.  In the case of 

temperatures, this might be particularly important for long-term projections based on climate model 

outputs.  Moreover, although a comparison has not yet been conducted for the latest round of model 

fits, comparisons of earlier fits indicated that the combined-season model performed comparably (as 

well or better) than single-season models for out-of-sample prediction. 

Models were fitted to both binary presence-absence and abundance (count) response data.  The 

overdispersed nature of counts and high proportion of zeros for some species necessitated a more 

flexible mean-variance relationship than that of the negative binomial error distribution, so we adopted 

a “hurdle” approach, modeling presence-absence with binomial error and then count conditional on 

presence using zero-truncated negative binomial error.  

Species responses to continuous predictor variables were modeled as smooth terms using thin-plate 

regression splines, while the effect of vessel was modeled as a parametric term.  In the presented 

models, the vessel effect is estimated for each species independently; however we are exploring the 

potential for drawing vessel effects randomly from a shared (i.e., species-common) distribution. 

Spatiotemporal covariance was modeled using a tensor product of 30 multi-resolution thin-plate spline 

(MRTS) spatial basis functions and 3 temporal basis functions (gaussian) that were associated with 

month of the year (i.e., from 1-12).  This allowed for observations falling closer together within a given 

year to be more closely correlated, helping to control for any seasonal variation that might not be 

accounted for by measured covariate.  Meanwhile, longer-term (i.e., interannual) temporal variability 

was modeled via a species-specific random intercept for “year”, which was drawn from a species-

common (i.e., shared) distribution with mean-zero.  We explored other alternatives for modeling time, 

including via an additional set of species-common temporal basis functions, and also as a tensor product 

(interaction) of spatial and long-term temporal (i.e. year) basis functions, however these more complex 

approaches tended to lead to overfitting and poorer out-of-sample prediction in both CBFM and single-

species GAMs.  We are in the process of exploring alternative approaches for modeling temporal 

covariation that include imposing an autoregressive structure on basis function coefficients and/or 

allowing them to vary over time. 

As a point of comparison, we also fitted “stacked” single-species GAMs using the same covariate set, as 

well as stacked spatiotemporal GAMS which included a 2-d smooth on latitude and longitude and a 
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random intercept for year (more complex spatiotemporal structures did not improve out-of-sample 

prediction performance, and often hindered it).  

Uncertainty in species responses to covariates is measured via 95% confidence intervals, with 

corresponding uncertainty in predictions quantified via 95% prediction intervals.  If estimates of 

uncertainty are available for predictor variables, additional model runs that incorporate this uncertainty 

(by including the upper/lower bounds of predictors and iterating over different combinations thereof) 

can be conducted.  

Covariates & Covariate Selection 

Physicochemical covariates included the following: 

 

Surface temperature (monthly mean)  

Bottom temperature (monthly mean)  

Surface salinity (monthly mean)  

Bottom salinity (monthly mean)  

Annual min surface temperature  

Annual max surface temperature  

Annual min bottom temperature  

Annual max bottom temperature  

Surface height anomaly (monthly mean)  

Bottom stress (95th quantile, static) 

PAR (at 0.5* depth - monthly mean, modeled as a tensor product with hue angle) 

Hue angle (at 0.5* depth - monthly mean, modeled as a tensor product with PAR)  

 

Temperatures, salinities, and sea surface height were obtained from the GLORYS 12v1 reanalysis (Jean-

michel et al. 2021), which provides spatially and temporally continuous data at a spatial resolution of 

1/12 degree (~ 9km) daily and corresponds closely to measured observations on the NE shelf (Chen et al. 

2021).  In addition to monthly mean surface and bottom temperatures and salinities, we also included 

long-term (annual) temperature extremes (i.e., min and max), which can be important drivers for many 

taxa (Morley et al. 2018).  Sea surface height variations related to circulatory features such as fronts and 

eddies are often associated with productivity, making them a valuable predictor for many species as well 

(McHenry et al 2019).  If desired, data from other circulation models (i.e., ROMS/HYCOM) could be 
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substituted here, and it may be worth performing some type of bias correction for these predictors, 

based on the instantaneous point measurements taken during NMFS surveys.   

Sea Bottom Stress (95th quantile, annual) was sourced from the USGS Sea Floor Stress and Sediment 

Mobility database (Dalyander et al., 2012), with spatial resolutions ranging from 3.5 to 5 km.  As time-

varying data were not available, this was treated as a static variable.   A measure of the strength of 

hydrodynamic forcing due to waves and currents at the seabed, bottom stress is a close correlate of 

water depth that has direct physical implications for locomotion, resource acquisition, and energetic 

costs of marine organisms, and may indirectly reflect other aspects of the benthic environment (e.g., 

epifaunal or infaunal community composition).  Rather than a mean or median, we opted to use 95th 

quantile values to capture the magnitude of more extreme events, which are often more ecologically 

relevant determinants of habitat use (Denny et al. 2009). 

Water column optical characteristics were estimated from remote sensing data with a horizontal 

resolution of 4km, following the methods of  Lee et al. (2021) and Lee et al. (2005) for hue angle and 

photosynthetically-active radiation (PAR) at depth, respectively (in collaboration with Dr. ZhongPing Lee 

at UMass Boston).   PAR measures the intensity of light (largely without regard for the spectral 

distribution), with high values indicating greater levels of illumination, such as those that would be 

experienced in clearer waters or shallower depths where attenuation by the water column is limited.   

Alternatively, hue angle quantifies the spectral distribution (i.e., the “color”) of light, ranging from 

roughly 40 deg in shallow, “red” estuarine waters with high levels of dissolved and suspended 

substances, to 120 deg in oceanic surface waters, and up to 240 deg at the lower end of the photic zone 

in clear, deep “blue” oceanic waters.    

Taken together, these two variables describe the basic quality of underwater illumination, which 

correlates closely with water depth but has much more direct ecological relevance.  Vision is the primary 

sensory mechanism through which many marine organisms occupying the photic zone perceive and 

navigate their surroundings, identify resources or capture prey, and detect and avoid predators.  The 

ocular systems of fish and invertebrates exhibit physiological specializations adapted to the intensity and 

spectral composition of light in the habitats they occupy (de Busserolles et al.  2017, Cortesi et al 2020).  

To capture the suitability of this “optical habitat”, we modeled the interaction between PAR and hue 

angle via a tensor product smooth, producing a 2-D response surface. 
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Because most spectral attenuation (and consequently the change in light quality) occurs in the upper 

levels of the water column, near-surface and bottom values of hue angle, and to a lesser extent PAR, are 

correlated.  To limit the number and collinearity of predictor variables, while also accommodating the 

fact that our model includes both demersal and pelagic functional groups, we estimated “generalized” 

optical parameters at the midpoint of the water column (i.e., 0.5 * depth).  In the case of discrete 

demersal and pelagic models (where covariates could be more tailored to the functional group of 

interest), we estimated these parameters at some fixed near-surface depth (10m for pelagic species) or 

at the seabed (for demersals). 

*Hue angle is closely correlated with remotely sensed Chlorophyll A concentration (a commonly used 

predictor variable), however exploratory analyses indicated that the former was more informative, and 

thus we opted to consider only hue angle. 

*Benthic habitat characteristics related to substrates (e.g., sediment type or grain size) and topography 

(topographic position or complexity), can be important predictors for demersal species.  These 

covariates are not included in the present model fits but can/will be in future runs. 

Covariates with heavily skewed distributions were log-transformed, and all were standardized (centered 

and scaled) for numerical stability.  Covariate selection is carried out during the model-fitting process, 

wherein an additional penalty associated with each smooth term serves to shrink the effect of any non-

informative covariates to zero, effectively removing them from the model.   

*Due to time constraints, the current model runs did not include the additional shrinkage penalty (which 

extends model run times considerably), however prior experimentation shows this has little to no effect 

on prediction. 

Model Assessment 

Out-of-sample prediction performance was assessed by training on 15 years of data (2000-2014) and 

extrapolating to 5 years (2015-2019).  For presence-absence models, classification and discrimination 

performance were quantified using AUC and Tjur R^2, while predictive deviance and RMSE were used to 

assess error/precision.  For count models, we used pseudo R^2  (the spearman correlation between 

predicted and observed counts) and RMSE.   
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PRELIMINARY RESULTS: 

Model Checking 

Residual checks indicate that with the exception of a few extreme values (~4 sds) overall  distributional 

assumptions were met.  There is evidence of a strong pattern for one species in the residual vs fitted 

values plot.  Refer to PLOTS/MODEL_CHECKING to view. 

Predictive Performance 

Considered across the species pool, the CBFM presence-absence fit had somewhat greater classification 

(AUC) and notably better discrimation (Tjur R^2) performance than single-species spatiotemporal GAMS 

(and much more so than GAMS that did not consider space and time), with comparable levels of error 

(RMSE).  The median AUC was 0.93 (ranging from 0.78 - 0.99), the median Tjur R2 was 0.50 (0.1 - 0.75), 

and median RMSE was 0.28 (0.09 - 0.42).  Refer to PLOTS/MODEL_PERFORMANCE to view.  

INSERT COUNT MODEL PERFORMANCE HERE…. 

For example species (Summer flounder and winter flounder): 

Summer Flounder: AUC = 0.94 and 0.93, Tjur R2 = 0.62 and 0.30, RMSE = 0.34 and 0.22, for adults and 

juveniles, respectively. 

Winter Flounder: AUC = 0.95 and 0.96, Tjur R2 =  0.66 and 0.65, RMSE = 0.30 and 0.26, for adults and 

juveniles, respectively. 

ADD COMMUNITY-LEVEL PERFORMANCE METRICS HERE IF POSSIBLE… 

Predictor Significance 

Across the two models (P/A and count), no covariate was significant for fewer than 31 spp.  In both 

models, optical parameters were significant for the greatest number of spp (92 and 75 spp, for P/A and 

count, respectively), followed by bottom shear stress (75 and 61 spp, respectively).  Every species had at 

least 2 significant predictors.  Refer to PLOTS/ALL_SPECIES/PREDICTOR_SIGNIFICANCE to view  

Species Response to Predictors 

Vessel effects were significant for 47 spp in the P/A model and 54 spp in the count model, and were 

reasonably similar (i.e.,correlated) across the two count models (Spearman’s R = 0.75).  The work of 

Miller et al 2010 indicate that the Henry Bigelow (HB) is generally more efficient than the Albatross (AL).  
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Consistent with this, the estimated effect of vessel (with AL being the baseline) was positive for the vast 

majority of species.  There were, however, a few exceptions to this that require additional exploration.   

We are looking into the possibility of drawing  vessel effects from a species-common, non-zero mean 

distribution which may enhance their estimation (they are presently estimated independently at the 

species level).  To provide an additional point of comparison, we can also run equivalent fits omitting the 

vessel effect and using the pre-calibrated count data. 

For smooth terms, the majority of estimated smooths appear reasonable and resemble the 

characteristic “niche” model (however there are some particularly “wiggly” smooths that deserve 

further exploration, and may require adjustments to wiggliness penalties, etc).  Note that the tensor 

product for optical parameters (hue angle and PAR) is plotted as a 2-dimensional response surface, 

where PAR is on the Y axis and Hue angle is on the X axis, with the color gradient fill reflecting the 

overall effect magnitude.   Higher values of PAR correspond with greater levels of illumination.  Low hue 

angles typically indicate an optical environment on the “redder” (more estuarine or coastal) end of the 

spectrum, whie higher angles correspond to a “bluer” (more offshore) environment. 

Refer to PLOTS/ALL_SPECIES/SPECIES_RESPONSE to view by predictor type (note the y-axis scale varies 

by sp. to exaggerate the shape of the response). 

Refer to PLOTS/EXAMPLE_SPECIES/SPECIES_RESPONSE to view by species (note the y-axis scale is fixed 

so that effect magnitudes are comparable across predictors). 

Variance Partitioning 

Variance partitioning plots show the proportion of variance explained by each of the environmental 

predictor variables, by species. 

Refer to PLOTS/ALL_SPECIES/VARIANCE_PARTITIONING to view plots for the entire community or 

PLOTS/EXAMPLE_SPECIES/VARIANCE_PARTITIONING to view subsets for summer and winter flounder. 

Predictions 

Visually, predictions of abundance were consistent with observations across the 20-year period, and 

appeared to resolve seasonal differences well. 

Refer to PLOTS/EXAMPLE_SPECIES/PREDICTIONS to view 

ADD PLOTS TO  PLOTS/ALL_SPECIES/PREDICTIONS WHEN READY 
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Correlations 

Residual correlations reflect the estimated residual covariance between species, or correlations in 

presence/absence or abundance that are not explained by species responses to the predictor variables.  

These may reflect the effects of missing predictor variables, dispersal processes, or biotic interactions.   

Partial correlations are obtained by inversion of the residual correlation matrix and control for indirect 

effects (e.g., if two species are positively correlated due to their shared negative correlations with 

another species) and therefore are considered to be a better indicator of “direct” biotic interactions.  

Still, correlations should be interpreted with caution/skepticism.  

Across the community, the most noticeable general pattern is a tendency for strong positive correlations 

between adults and juveniles of the same species, which may reflect their common responses to 

unmeasured environmental variability but may also be indicative of dispersal processes/limitations.. 

Refer to PLOTS/ALL_SPECIES/CORRELATIONS to view the full matrices for the entire community   

Refer to PLOTS/EXAMPLE_SPECIES/CORRELATIONS to view subsets for summer and winter flounder 

 


