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The estimate of b] is used for the mean of the b; priors. As the
productivity is time-varying, we want the estimation of a] based
only on the first observations and these b] values. To do so, we use
arbitrarily the first 5years y; ,.s and S; .. to compute a; .5 by solving
the following equation:

r ’
Aivs = Yias — b; 'SLl:S

The mean of the five values a5 is used for the mean of the g, ,
prior. To limit the sensitivity of parameter estimates to this value
of the first estimates of a, we set the prior with a very large vari-
ance (109).

The error terms are estimated by maximization of the likeli-
hood within the DLM package (Petris et al. 2009) in the statistical
software R. Starting values for the standard deviations correspond
to guesses based on the observation likelihood surface (Fig. S1%).

Monotonic directional drift and external drivers of productivity

If a productivity time series is different from simple white
noise, it might be relevant to testifit can be better described with
a monotonous trend described by a drift term, as well as test its
relationship to potential climate drivers. Including such external
drivers aims to better predict the productivity evolution. A stock-
by-stock varying model is used as a baseline for this type of model;
for brevity we use the term environment-driven models to refer to
models with either a drift term or climate variable included. The
process model (eq. 3) is rewritten as

w

(6) Ay = Ay g+ CyZyy g W, With W, ~ N(O,a’z)

where ¢;;, is a constant parameter referring to the stock i and the
covariate jand Z; ,_,,, the covariate j at year t - lag; the lag is set
given literature information (Table 2). For the simple drift formu-
lation describing a monotonous trend in productivity, Z;, _;,, is set
to1l

Productivity covariance among the stocks

Accounting for productivity covariance among the stocks could
lead to more accurate estimates (Minto et al. 2014). Moreover, with
a well-developed covariance matrix, stocks with longer time se-
ries could be used to estimate the productivity of stocks with
truncated time series of recruitment and SSB or stocks with un-
certain terminal years. The corresponding model with a full time-
covarying productivity (called full-covarying model) is described.
It is the same as the varying model with the same snr, but a
different variance—covariance submatrix W,:

Wy Wy W
2
B W= Oy, O, COV,y, \y
a .
COVyy \y, COVy o

This last model contains a large number of covariance parame-
ters (I x (I-1)/2, with I being the stock number); however, many of
them may not be significantly different from zero.

A second model is developed to optimize the number of cova-
riance parameters to account for noninformative parameters
(called partial-covarying model). Testing all partial time-covarying
possibilities (2I'-9/2) is not reasonable and would be far too time-
consuming. To minimize the number of models to be tested an
iterative method, we started with the full covariance model. Ini-
tially, the absolute values of the correlation matrix elements
defined in the full time-covarying model are calculated. The
covariance parameter corresponding to the lowest correlation

value is set to 0 and the new model is estimated. This operation is
done iteratively. The last model corresponds to all covariance
parameters set to O (i.e., the varying model). For computing capac-
ity reasons, these models were developed separately for the three
species groups (pelagic, demersal, and flatfish), but can be poten-
tially extended for any pool of stocks.

Model output analyses

Time consistency of productivity

Considering time-varying productivity is relevant if productiv-
ity differs from simple white noise around the mean. For each
stock, we calculate the difference between the productivity time
series of the varying model and the average productivity. We then
calculate the length of positive runs and negative runs over each
stock’s time series (number of years that this difference is consec-
utively of the same sign) and calculate the average length of pos-
itive or negative runs for each stock. The greater this number, the
further the time series is from white noise and, consequently, the
more the time-varying productivity should be considered as rele-
vant.

Main productivity pattern among the stocks

In an attempt to understand the main trend of the time-varying
productivity terms across all the stocks, we employed dynamic
factor analysis (DFA) with a single trend (Zuur et al. 2003). The
main trend tendency among the productivity time series would
synthesize the patterns of fish productivity over the Northeast US
continental shelf. The balance between positively and negatively
related stocks to this trend would reveal the most consistent pat-
tern of fish productivity in this ecosystem. The power of this trend
to explain the productivity variability among the fish stocks
would indicate the consistency or the inconsistency of the produc-
tivity evolution among the stocks. All scaled productivity time
series from the varying model are used as observations. DFA is
described here in matrix form:

(8)  Z =Hp, +m, with v, ~ N(O,M)

(9) P =p_, +n with w~N(0,07)

MatrixZ, = (z,, 2,, .-, z,')', withz, the scaled productivity for the
ith stock at time t, H = (c;, ¢, ..., ¢)’, with ¢; the correlation coeffi-
cient to the trend for the ith stock. Matrix M = diag(o?,
. - @p,). Vector p, is the productivity trend at time t; the time
series is initialized with the prior p, ~ N(0, 10°).

Model comparison

Selecting the best baseline models (invariant versus varying
models) and comparing the best baseline models with the
environment-driven models is done stock by stock with the com-
mon signal-to-noise ratio. These steps are based on two different
indices: a likelihood-ratio test and the gain of forecast accuracy,
which provide different but complementary sources of informa-
tion. The likelihood-ratio test is a y? test with the corresponding
difference of degrees of freedom between the two models. From
the time-invariant to the time-varying models, one degree of free-
dom is removed due to the addition of estimating the variance
of the time-varying parameter. From the time-invariant to the
environment-driven models, two degrees of freedom are removed
(one for the estimation of the variance of the time-varying param-
eter and one for the estimation of the drift or the regression
parameter). From the time-varying to the environment-driven
models, one degree of freedom is removed (drift or regression
parameter). The likelihood ratio test uses the full time series.

The forecast-accuracy gain is based on the ability of the models
to forecast future observations using truncated time series. The
number of time steps into the future is denoted as d (from 1 to 3).
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assessment models also contain stock-recruitment functions that
could influence the productivity results, in general, the objective
functions of the assessment models are configured such that the
stock-recruitment functions have little influence over the esti-
mates of recruitment. The coefficient of variation for recruitment
is typically quite large, ensuring that the catch-at-age data from
the fisheries-independent and -dependent sources drive recruit-
ment. The method is self<checking, in that if a stock-recruitment
function were used to estimate recruitment, the state-space
model would estimate a relatively smooth, time-invariant produc-
tivity term. Several of the fish stocks used in this study exhibit
retrospective patterns, whereby estimates of R and S for a recent
year change retrospectively as new years of data are added to the
analysis (Mohn 1999). Retrospective patterns will also occur in the
productivity estimates, though they are damped somewhat in
the ratio R[S, because R and S usually change in the same direction.
The time-varying productivity estimates do not correct for po-
tential retrospective patterns, but are also not the result of
retrospective patterns because strong variations are observed
all along the time series, not only in the final years.

The time-varying state-space model provides a better descrip-
tion of the productivity for a number of stocks. The trend describ-
ing the best productivity time series across all stocks corresponds
to a consistent decrease in productivity since the 1980s. This con-
sistent decrease suggests that the Northeast US continental shelf
ecosystem is undergoing a long-term change in the dynamics of
its fish communities. More stocks were positively related to the
trend, potentially suggesting a shift to an ecosystem more depen-
dent on fewer stocks with higher productivity. However, this gen-
eral pattern hides a more complex situation with a large diversity
of trends among the stocks. While the single trend from the DFA
captures much of the variance for some stocks, it accounts for
only a small fraction for others, and the trend has a negative
relationship for some stocks. Similarly, there are relatively few
terms in the partial-covariance matrices, indicating that there are
not many common patterns across the stocks. The productivity of
demersal stocks exhibits a large range of patterns, both positive
and negative, while the pelagic fish are best described by time-
invariant models; the flatfish stocks generally exhibit a decline in
productivity as has been seen in other studies (Bell et al. 2014).
While other studies have found evidence of regime shifts on the
Northeast US shelf (Perretti et al. 2017), it was not present in the
DFA trend. Collie et al. (2008) found that fish composition had
shifted from a demersal-dominant community to a pelagic-
dominant community in a coastal bay within the Northeast US
shelf. We found declines in productivity for a number of bottom-
oriented stocks, but not a subsequent increase in productivity for
pelagic species that could lead to an increase in abundance and
shift in the pelagic-demersal ratio on the basis of recruitment
productivity.

There are two main mechanisms leading to an increase in pro-
ductivity. First, the spawners can be more fecund through such
processes as improved condition factor heading into the spawn-
ing season (Leaf and Friedland 2014) or an expanded age structure
with more older and larger individuals that produce more viable
eggs than young marture fish (Hutchings and Myers 1993). Second,
the proportion of individuals reaching recruitment increases.
There are a range of biological mechanisms associated with in-
creased survival during the earliest life stages, such as advection
to nursery grounds (Garvine et al. 1997), suitable physiological
conditions, reduced predation (van der Veer etal. 2000; Taylor and
Collie 2003), and sufficient food (Castonguay et al. 2008). Broad-
scale environmental changes can affect the whole ecosystem
(Klein et al. 2017), altering oceanographic and energetic pathways,
which in turn impact stock productivity.

This study found relatively few relationships between environ-
mental drivers and stock productivity. Strong patterns across
numerous stocks were not apparent in any of the analyses,
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suggesting that broad-scale environmental covariates may not
provide simple, straightforward understanding of stock dynam-
ics. Even the use of perfect predictions of environmental covari-
ates provided a gain in forecast accuracy for only four of the
25 stocks. This is not to say that the environment is unimportant,
but only that the exact mechanism may not have been identified.
For instance, only a linear relationship was tested between SST
and productivity even though a hypothesis considering an opti-
mum temperature window, but requiring more parameters, is
more likely (Jobling 1994; Mantzouni et al. 2010). The optimum
temperature window hypothesis might help explain the discrep-
ancy in the relationship between SST and productivity for the five
stocks that were significant, but forecasts were notimproved with
SST. The temperature in the most recent years is warmer and
outside the range of temperatures in the majority of the SST time
series. This example emphasizes the importance of using comple-
mentary tools to check the consistency of a relationship over time
and cautions forecasting based on an extrapolated relationship.
The results, however, do support some previous studies relating
stock productivity with environmental covariates such as south-
ern New England - Mid Atlantic winter flounder (Jeffries and
Johnson 1974; Bell et al. 2014).

The broad productivity patterns among the fish species suggest
that they are affected by different covariates or at least by different
mechanisms related to common covariates. The few correlations
with climate covariates are consistent with these conclusions. The
positive covariance among the same species, but different stocks,
in the Gulf of Maine and George Bank is consistent with other
recent observations (Dorner et al. 2008; Minto et al. 2014) and
supports the hypothesis that there are regional drivers affecting
several stocks at the same time (Rothschild 2007). The lack of
environmental relationships that hold up over time underscores
three important concepts: (i) demonstrating robust links between
population dynamics and the environment is both challenging
and time consuming; (ii) the state-space method used here can
detect and account for changes in productivity without under-
standing the underlying mechanism; and (iii) the state-space
method can rapidly examine stocks for changes in productivity
and be used to focus climate research on those stocks with the
most to gain.

Management implications

Two main components lead to variations in exploited fish stock
dynamics: the evolution of the adult stock size and the ability of
the fish to produce recruits (i.e., productivity). The variation of
predation and (or) fishing pressure on the adult fish stock can be
directly quantified by accounting for the predator abundance
within a multistock model and (or) the measurement of the fish-
ing pressure (Quinn and Deriso 1999). Variations in productivity
are not directly observable, but the state-space approach used
here shows that different tools can be used to anticipate produc-
tivity evolution and thus provide valuable information for man-
agement.

One of the main tasks of management s to set harvest levels for
upcoming fishing seasons, which involves projecting SSB and re-
cruitment levels 1-3 years in the future. This study focused on
recruitment projections, recognizing that considerable error also
exists in SSB forecasts (Wiedenmann and Jensen 2018). The simple
varying productivity models provided good forecast power in the
short term (1-3 years) for most species and generally outper-
formed the time-invariant models. The multispecies inference us-
ing the covariance matrix (Minto et al. 2014) is an effective
technique to improve recent productivity estimates and thus fore-
casts, particularly for stocks with limited information. However,
it was not overly applicable to stocks on the Northeast US shelf.
Owing to the lack of broad productivity patterns, there was rela-
tively little information in the covariance matrix, limiting its use
in the region. Likewise, the lack of many strong environmental
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relationships limited their ability to improve short-term fore-
casts. Should new environmental relationships come to light, the
machinery is prebuilt within the state-space models and could be
easily incorporated.

The varying-productivity models may improve current prac-
tices that forecast biomass with the most recent information such
as recruitment and weight-at-age over the last few years. While
forecasting is important, the utility of the dynamic productivity
term goes beyond biomass forecasting and is able to directly in-
form sustainable harvest practices (Collie et al. 2012). Reference
points are a direct function of productivity. If productivity is
changing, the exploitation level that a stock can sustain is also
changing, suggesting that dynamic reference points may be use-
ful. While major changes in reference points and catch levels on
an annual basis would be untenable, well-crafted, dynamic refer-
ence points could enable adaptable management practices that
are more in tune with the current state of the ecosystem.

While strong environmental drivers did not emerge for the
majority of the stocks, the demonstration of time-varying produc-
tivity for a large number of stocks on the Northeast US shelf
provides valuable information for future management. Regard-
less of the drivers, harvest control rules that incorporate dynamic
productivity could benefit the provision of catch advice for fish-
eries management on the Northeast US shelf.
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