A Cost Efficiency Analysis for Catch Accounting in NE Groundfish

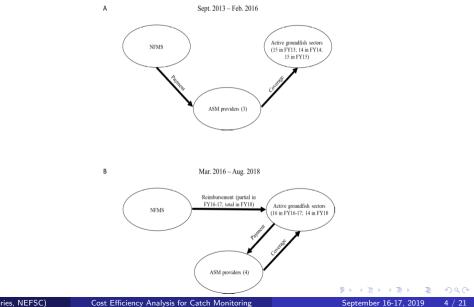
Chad Demarest, Anna Henry, Greg Ardini, Samantha Werner NOAA / NEFSC / READ / SSB September 16-17, 2019

Why invest in catch accounting?

- Inding overfishing (MSA 2007, NS1 guidelines)
- Assessments rely on accurate catch
- Triggering AM's and payback mechanisms only for those responsible
- Functional markets for catch rights (ACE leasing)
 - Prices tell fisherman how and where to fish
 - High-grading and discarding mute price signals
 - Creates differential incentives for lessors (high lease prices) and lessees (low lease prices)

If F drives stock dynamics, and we don't account accurately for removals, stocks assessments will degrade and stocks will fail to rebuild Three margins for catch accounting:

- Landings
- Oiscards
- Harvest stock area


		1	1	0	1				
		Fishing	Kept	Catch	Disc	ard	Lan	ding	Biological
Data Source	Gear	Location	quantity	species	quantity	species	quantity	species	info
At Sea Monitors (ASM) Northeast Fisheries Observer Program (NEFOP)	I	I	I	I	I	I			I
Dealer Reports (Electronic) Vessel Trip					-		S	S	
Reports (eVTR/VTR)	S	S	S	S	S	S			
Vessel Monitoring System (VMS)	S	I*							

Fishing information provided

3

イロト 不得下 イヨト イヨト

ASM Costs

Demarest et al. (NOAA Fisheries, NEFSC)

ASM costs are estimated by Ardini et al (2019)

- Compares actual provider payments under NMFS (gov't) contracts to the rates in sector-negotiated (private) contracts
- Finds that costs are roughly equivalent for gillnet vessels and small trawlers, but are 20% lower under private contracts for large trawlers
- Cost savings driven almost exclusively by contract efficiencies for mult-day trips

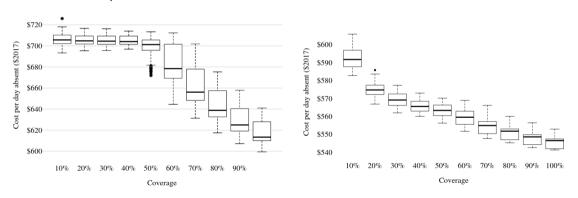
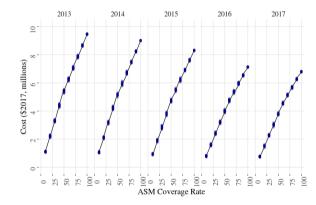

Vessel Type	# Single Day Trips	# Multi Day Trips	% Multi Day Trips	Sector Con- tracts At-Sea Cost	NMFS Con- tracts At-Sea Cost	Cost Reduction Under Sector Contracts
Gillnet	1453	209	12.58%	1.09	1.12	2.79%
Large Trawl	249	1000	80.06%	3.44	4.23	18.54%
Small Trawl	945	116	10.93%	0.65	0.65	0.97%

Table 1: At-sea and total cost rates (2017 USD) under NMFS contracts and sector contracts, applied to fishing years 2013-2018, through August 2018.

		Average At-Sea Cost	Average Total Cost
	NMFS contracts	685	856
Cost per observed seaday (ob-	FY16 contracts	579	599
served seadays=8918)	FY17 contracts	602	623
	FY18 contracts	593	615
	Avg. FY16-18	592	612
	NMFS contracts	789	986
Cost per observed day absent	FY16 contracts	667	690
(observed day absent=7743)	FY17 contracts	694	718
	FY18 contracts	683	709
	Avg. FY16-18	681	705
	NMFS contracts	92	115
			80
Cost per total day absent (to-	FY16 contracts	78	
tal days absent=66,626)	FY17 contracts	81	83
	FY18 contracts	79	82
	Avg. FY16-18	79	82

Note: Cost per observed seaday is based on the billing schedule for seadays paid by NMFS (quarter days).


ASM costs are modeled as a function of contract rates, with adjustments for the number of observers needed.

Updated version

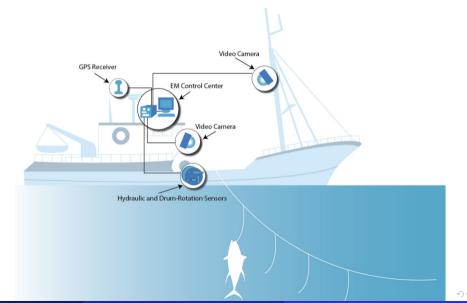
Old version

Coverage rate	2013	2014	2015	2016	2017
10	1.1	1.1	1.0	0.8	0.8
20	2.2	2.1	1.9	1.6	1.5
30	3.4	3.2	2.9	2.4	2.3
40	4.5	4.3	3.9	3.2	3.1
50	5.5	5.2	4.8	4.1	3.9
60	6.3	6.0	5.6	4.8	4.6
70	7.1	6.8	6.3	5.4	5.2
80	7.9	7.6	7.0	6.0	5.8
90	8.8	8.3	7.7	6.6	6.3
100	9.6	9.1	8.4	7.2	6.9

3

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

Length class	Coverage rate	2013	2014	2015	2016	2017
	10	2.4	2.1	2.1	1.6	1.8
	20	4.8	4.2	4.2	3.2	3.7
	30	7.2	6.2	6.4	4.8	5.5
	40	9.6	8.3	8.5	6.4	7.3
>=30', <50'	50	11.8	10.2	10.6	8.1	9.1
	60	13.6	11.7	12.3	9.6	10.9
	70	15.4	13.2	13.8	10.8	12.4
	80	17.1	14.7	15.3	11.9	13.7
	90	18.8	16.2	16.9	13.1	15.0
	100	20.5	17.7	18.4	14.3	16.3
	10	5.0	5.0	4.4	3.7	4.1
	20	10.0	10.0	8.9	7.4	8.2
	30	15.0	15.0	13.3	11.2	12.3
	40	20.0	20.0	17.7	14.9	16.4
>=50', <75'	50	24.7	24.4	22.1	18.6	20.5
	60	28.4	28.0	25.6	22.1	24.6
	70	32.0	31.7	29.0	24.9	27.9
	80	35.6	35.3	32.1	27.5	30.7
	90	39.2	38.8	35.4	30.3	33.8
	100	42.8	42.4	38.5	33.0	36.6
	10	9.7	10.2	9.7	9.0	8.1
	20	19.5	20.3	19.4	18.0	16.2
	30	29.2	30.5	29.2	27.0	24.3
	40	38.9	40.7	38.9	36.0	32.4
>=75'	50	48.0	49.7	48.6	45.0	40.5
	60	55.2	57.2	56.3	53.4	48.5
	70	62.3	64.6	63.6	60.2	55.0
	80	69.2	71.9	70.5	66.7	60.6
	90	76.3	79.2	77.7	73.3	66.7
	100	83.2	86.5	84.6	79.8	72.2


NEFOP isn't going away, "comprehensive monitoring" assumes 91% ASM

	2013	2014	2015	2016	2017
91% coverage	8.84	8.4	7.78	6.68	6.39

Further, single-observer ASM not comprehensive on multi-day trips

Fishing Year	% hauls unobserved on single day trips	% hauls unobserved on multi day trips
2010	2%	14%
2011	2%	14%
2012	1%	13%
2013	2%	14%
2014	1%	15%
2015	2%	14%
2016	1%	16%
2017	1%	15%
2018	2%	20%

EM Costs

Demarest et al. (NOAA Fisheries, NEFSC)

Estimates a sum of component costs

- Equipment
- Field services
- Video review
- Data storage

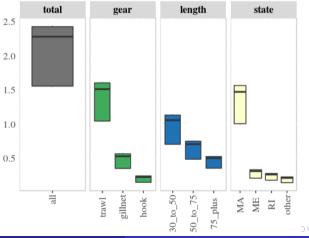
Derived from conversations with four service providers, pilot project data, and a detailed survey

Each aspect modeled separately

- Using provider responses
- Mix-and-match to preserve anonymity
- Actual cost variability may be lost, as EM is a 'package' and providers may optimize around different components
- Other than video review, cost estimates are likely too precise

Work began in 2016, costs may be different today

Equipment

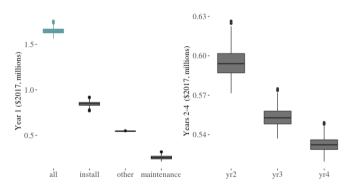

Cost is sum of.

- Systems included
 - Three cameras
 - Control box
 - User interface
 - GPS
 - Hydraulic pressure transducer
 - Drum rotation sensor
- Additional cameras
 - three assumed
 - four required on vessels < 40'
- Software
- Spare parts
- Three hard drives
- Other costs

Cost Efficiency Analysis for Catch Monitoring

$$\sum_{\nu=1}^{n} \left(SC_{\nu} + nC_{lg_{\nu}} + S_{\nu} + Sp_{l_{\nu}} + Hd_{\nu} + O_{\nu} \right)$$

.



Field Services

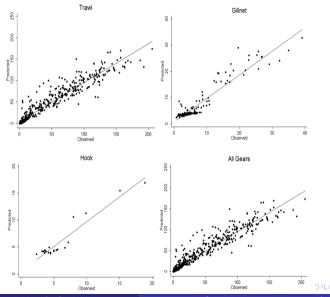
Cost estimated separately for year one and subsequent years:

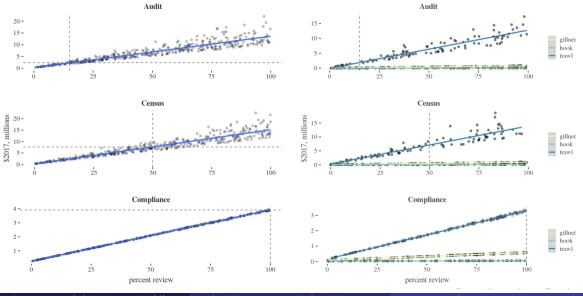
- Year 1
 - Installation
 - $\bullet \ \mathsf{labor} + \mathsf{travel}$
 - two technicians
 - Maintenance
 - Visits every 7th trip
 - Four hours each visit
 - Various travel assumptions
- Subsequent years
 - Maintenance (as above)
 - Other (phone service, etc)

 $\sum_{v=1}^{n} (h_{cl_{v}}e+2) * w_{h_{v}} + (h_{cl_{v}}e+2) * w_{l_{v}}$

Video Review

Cost is function of:


- Amount of video needing review
- Relationship between video time and review time
- Steaming review vs. fishing review
- Nature of review itself


Program design	Discard data source	Disadvantages	Advantages
Census	EM footage	high footage review time specific catch handling protocols	high data quality
Audit	logbook	specific catch handling protocols	lower footage review time fishermen participation in data incentives for catch handling
Compliance	EM footage (presence/absence only)	no discard quantity/composition information	lower footage review time normal catch handling protocols

Video Review (con't)

$$\sum_{g=1}^{3} \sum_{t=1}^{n} (Rs_{gt} * Td_{gt} + Rf_{gt} * Fd_{gt} + P_{gt}) * L_{gt}$$

- Review ratio for transit time
- Transit duration (hours)
- Fishing duration (hours)
- Estimated uniquely for vessel size, gear type and EM program

Demarest et al. (NOAA Fisheries, NEFSC)

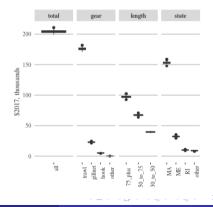
Cost Efficiency Analysis for Catch Monitoring

September 16-17, 2019 17 / 21

Data Storage

Cost is function of of:

- Resolution
- Frame rate
- Bit rate
- Image itself (multifaceted images create more data)


Additional considerations:

- What qualifies as data?
- Will all footage need to be retained and stored?
- For how long? Is video footage a federal record (retained for seven years)?
- How often do data need to be accessed or stored?

Demarest et al. (NOAA Fisheries, NEFSC)

Cost modeled as: S + P + G + A, where

- Storage cost
- Put fee (sending data)
- Get fee (retrieving data)
- Marginal fee per unit accessed

	AUDIT MODEL				
Year	Equipment Costs	Field Costs	Review Costs	Storage Costs	Total
1	2.09	1.65	2.33	0.21	6.28
2	0	0.60	2.13	0.21	2.93
3	0	0.55	2.06	0.20	2.82
4	0	0.53	2.03	0.20	2.76
5	0	0.53	1.95	0.20	2.68
Mean	0.42	0.77	2.10	0.20	3.49

CENSUS MODEL

Year	Equipment Costs	Field Costs	Review Costs	Storage Costs	Total
1	2.09	1.65	8.04	0.21	11.99
2	0	0.60	7.25	0.21	8.05
3	0	0.55	7.01	0.20	7.76
4	0	0.53	6.87	0.20	7.61
5	0	0.53	6.70	0.20	7.43
Mean	0.42	0.77	7.17	0.20	8.57

COMPLIANCE MODEL

Year	Equipment Costs	Field Costs	Review Costs	Storage Costs	Total
1	2.09	1.65	3.92	0.21	7.87
2	0	0.60	3.69	0.21	4.49
3	0	0.55	3.60	0.20	4.36
4	0	0.53	3.54	0.20	4.28
5	0	0.53	3.48	0.20	4.21
Mean	0.42	0.77	3.65	0.20	5.04

Demarest et al. (NOAA Fisheries, NEFSC)

Cost Efficiency Analysis for Catch Monitoring

Summary of changes since previous version:

- ASM problem, as previously noted
- Review time estimates had several coding problems
- Field and Storage costs were not inflation-adjusted (\$2017)
- Summary tables (now Table 14) did not accurately reflect figures
- Continued cleaning up text

Questions?

3

・ロト ・ 理 ト ・ 国 ト ・ 国 ト