Herring Control Rule Advice

Andrew Applegate NEFMC Staff

EBFM PDT Chair

EBFM Committee March 30, 2015

Schedule

Herring ABC control rule advice

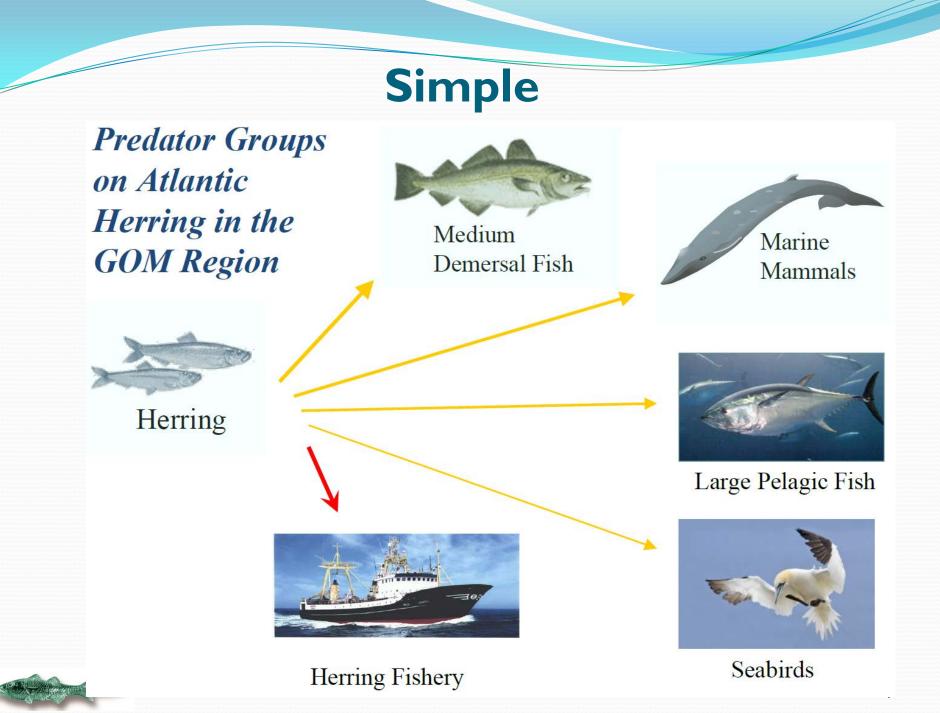
Date	Committee	Action
April 14	EBFM PDT	Presentations of analyses and draft material
May 5	EBFM PDT	Final sections and conclusions
May 20	SSC	Provides input to the Council
June 2	EBFM & Herring Committee	Receives PDT and SSC reports; reviews Amendment 8 scoping comments
June 16-18	Council	Receives PDT and SSC reports; EBFM & Herring Committee reports

- Problem statement and objectives
 - What is Amendment 8 meant to do?
- Management background
 - Current management
 - Forage availability
- Examples of forage species management elsewhere
 - Why?
 - Different approaches

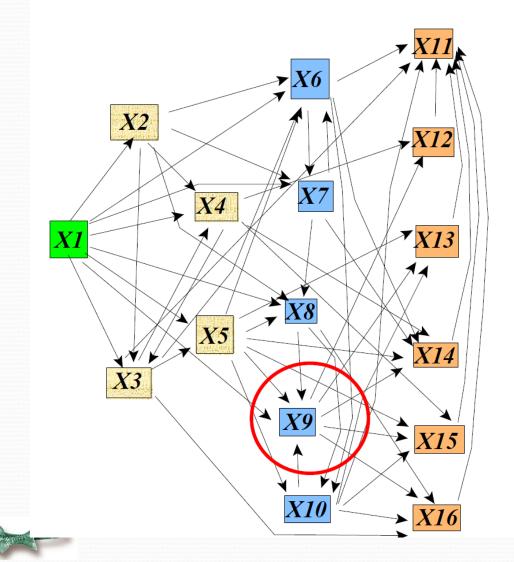
- Performance of types of control rules
 - Average stock size relative to B_{msy}
 - Changes in average yield
 - Stock stability
 - Probability of reducing catch to zero
- Herring consumption estimates
 - Total consumption
 - Percent of herring in diet

Ecological implications

- Predators and alternative prey sources
- Effects on predator productivity


Economic implications

- Potential benefits vs revenue loss
- Potential for localized and community effects


- Effects of climate change on prey availability
 - Match/mismatch
 - Other effects
- Conclusions and recommendations
 - Options to consider
 - Characteristics and probable results

Yet Complex

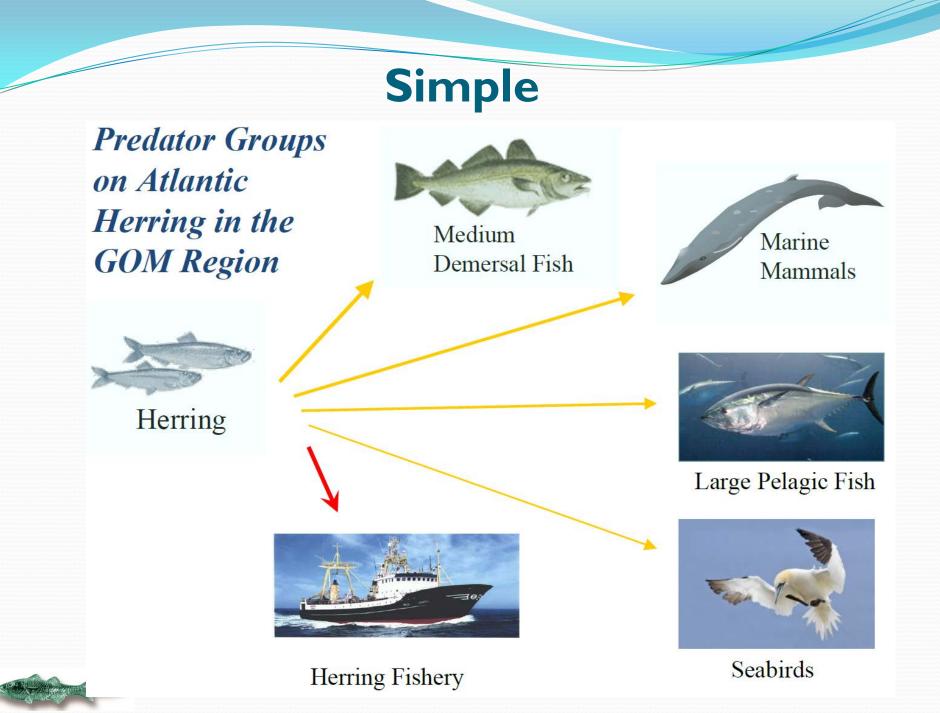
GOM Aggregated System Flow

X1 Phytoplankton X2 Bacteria X3 Zooplankton X4 Gelatineous zoop X5 Microneckton X6 Macro-benthos X7 Mega-benthos X8 Shrimp X9 Pelagic fish X10 Demerdal fish X11 Sharks X12 HMS X13 Pinnipeds X14 Baleen whales X15 Toothed whales X16 Seabirds

Forage management examples in the literature

- MAFMC white paper synthesizes regional forage fish management
- Historical perspective on forage fish management (Rice and Duplisea (2014)
- Traditional MSY approach may not work when
 - Predators have high connectedness to prey or
 - Prey usually has a relatively high biomass within the ecosystem
- Development of tools to evaluate economic tradeoffs
 - Inclusion of economic analysis in ecosystem modeling

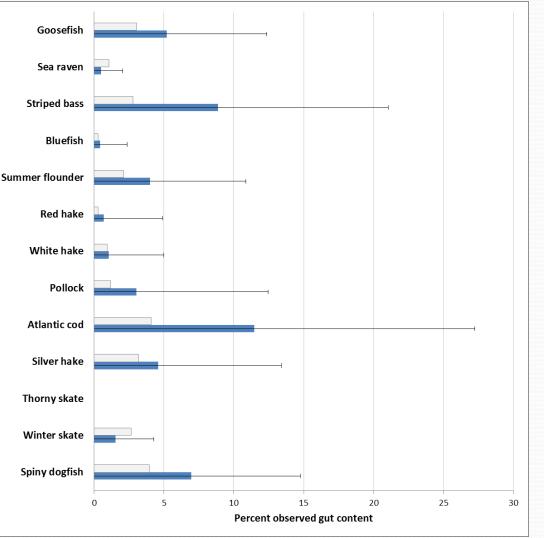
Forage management examples in the literature


- Other ecosystem issues or concerns
 - Predator-prey interactions occur on spatial scales smaller than stock-wide or regional
 - Alternative prey are not necessarily equal nutritional content and hunting difficulty

Forage management examples in the literature

- Economic literature is sparse
- Lobster fishery not highly sensitive to herring landings
 - Price differential for alternative sources
 - Lehuta, Holland, & Pershing 2014
- Lobster productivity enhancement
 - Mitigated with different baits
- Fishing forage fish exacerbates natural variation and yield (Essington et al 2014)

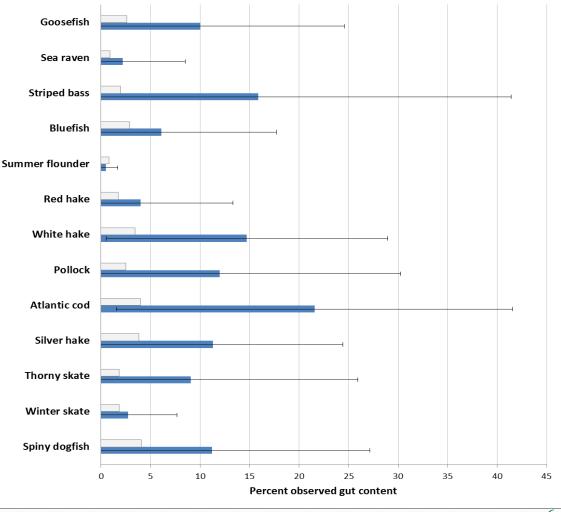
ABC control rule with B=B_{msy} target


Beneficiaries	Mechanism	Magnitude
Herring fishing industry	Catches closer to MSY. Total revenue may be offset by supply/demand relationship	Small when population > B _{msy}
Lobster industry	Greater bait supply	Small if substitute bait sources exist
Lobster resource	Herring eaten from traps may boost lobster growth and productivity	Significant – Grabowski 2010; 80% of diet is bait in fished waters
Fish larvae	Herring are zooplankton predators, either removing foods in common or direct consumption of larvae and eggs.	Unknown
Tuna industry	Decreases in bait supply	Small if substitute bait sources exist

ABC control rule with B>B_{msy} target

Beneficiaries	Mechanism	Magnitude
Fish predators (e.g. cod, dogfish, silver hake)	Faster growth, higher condition factor, more energy available for reproduction.	Unknown
Tuna	Same as above plus larger patches of herring as an attractant (availability)	Important
Whales	Same as above plus larger patches of herring as an attractant (availability)	Possibly important (alternative preys?)
Seabirds	Same as fish	Possibly important, for specific species

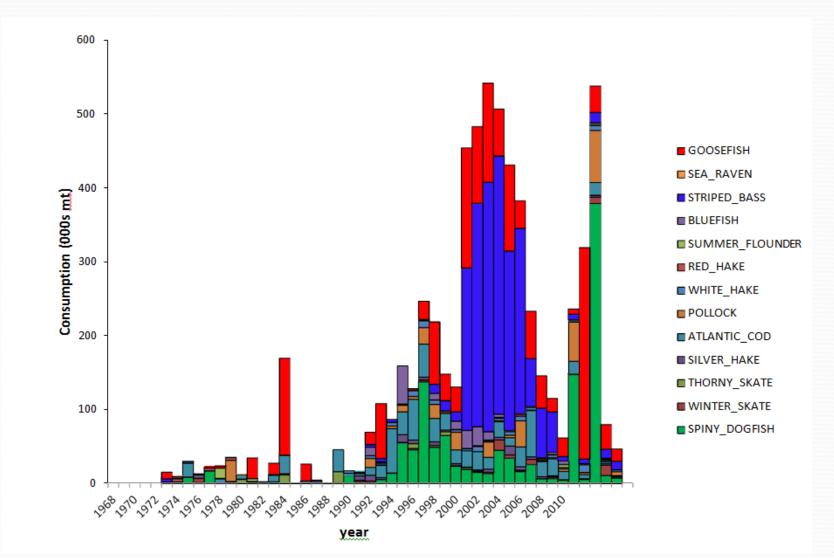
Herring predators,1973-2010 spring (% of gut contents; Table A6-10 from SAW 54)


- Average percent in blue with one standard deviation around the mean
- Plotted with grey shading, persistence is the percent of years with herring in the observed guts

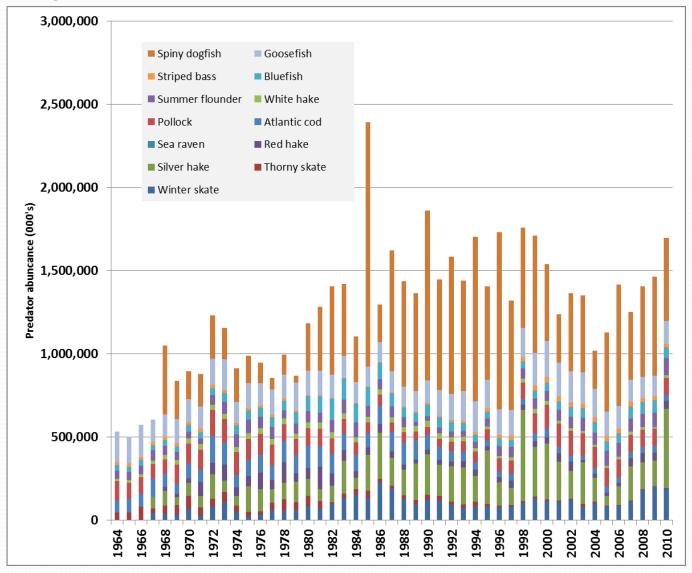
Herring predators, 1973-2010 fall

(% of gut contents; Table A6-9 from SAW 54)

- Average percent in blue with one standard deviation around the mean
- Plotted with grey shading, persistence is the percent of years with herring in the observed guts

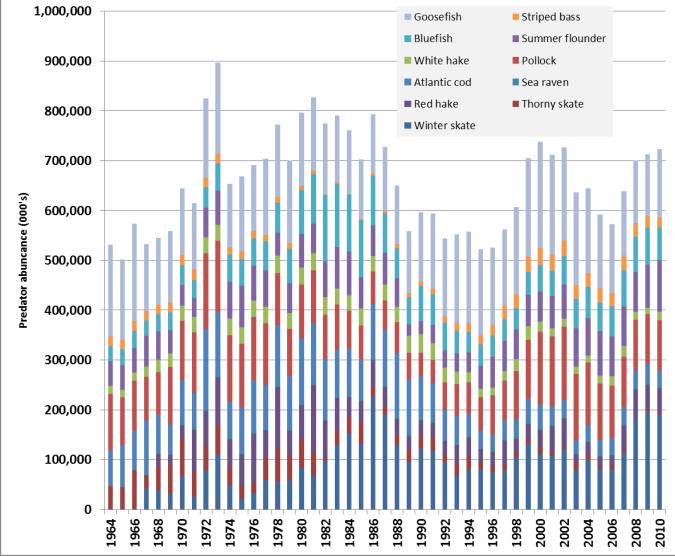

Estimated diet for three top fish

predators, 1973-2012

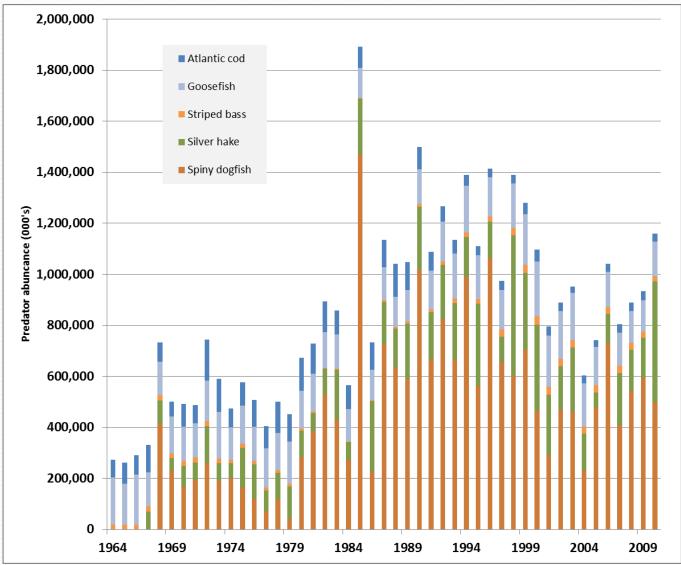

100% Mackerels All others 90% Flounders Mackerels Mackerels Eelpouts Cods Cods Cods Mackerels 80% Brittle stars Snails 70% Unid fish Cods Unid fish Fish eggs Unid fish 60% Unid fish Krill 50% Seaurchins Crabs 40% Comb jellies Crustaceans Herrings Herrings 30% Herrings Cephalopods Bivalves 20% Unid Herrings Amphipods 10% Sand lances Sand lances and lances 0% Cod Silver hake Dogfish

•Gulf of Maine, Georges Bank, Southern New England combined

Herring consumption by fish Saw 59, Figure A6-5

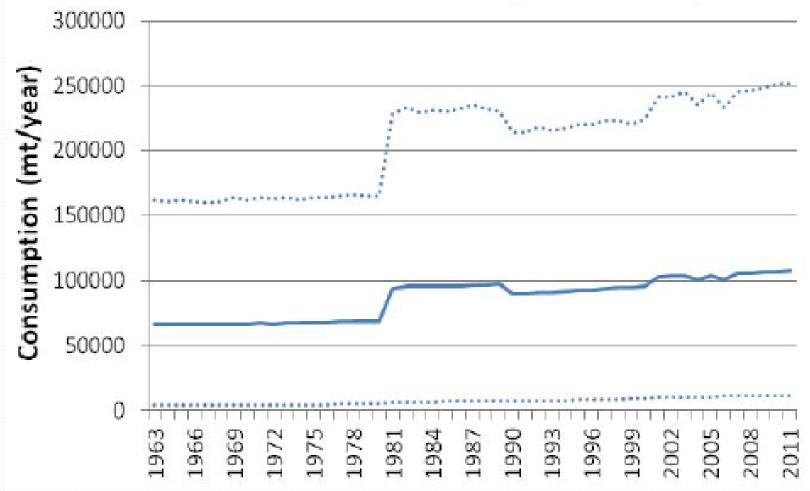


Fish predator abundance

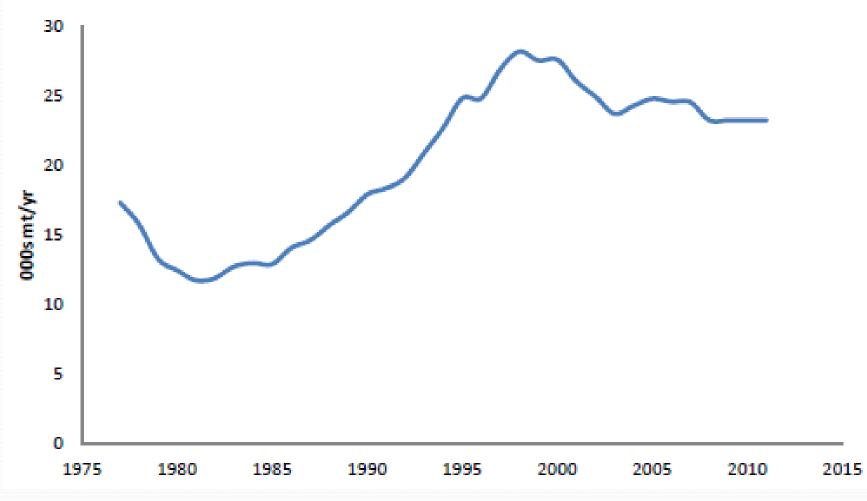


Fish predator abuncance

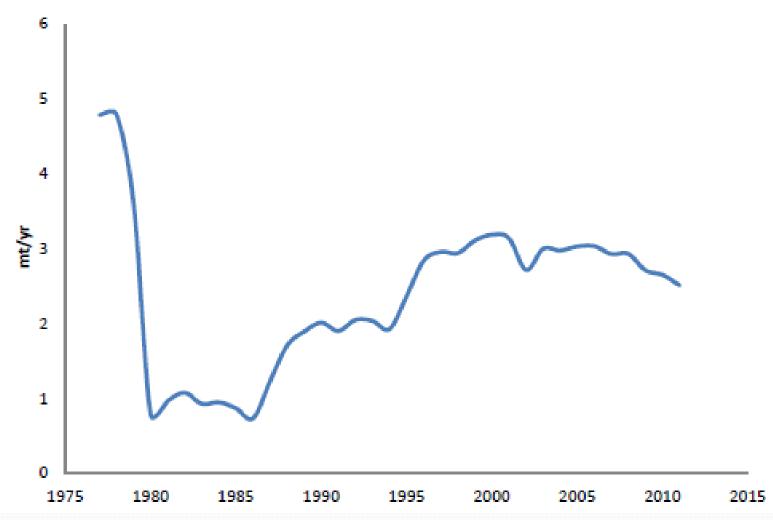
without spiny dogfish



High reliance predators


Clupeid consumption by marine mammals Saw 54, Figure A6-6

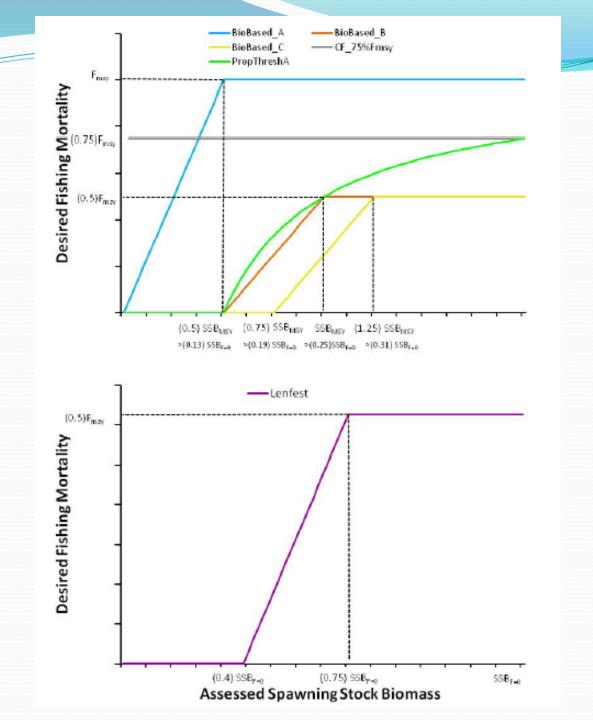
Marine Mammal Annual Clupeid Consumption

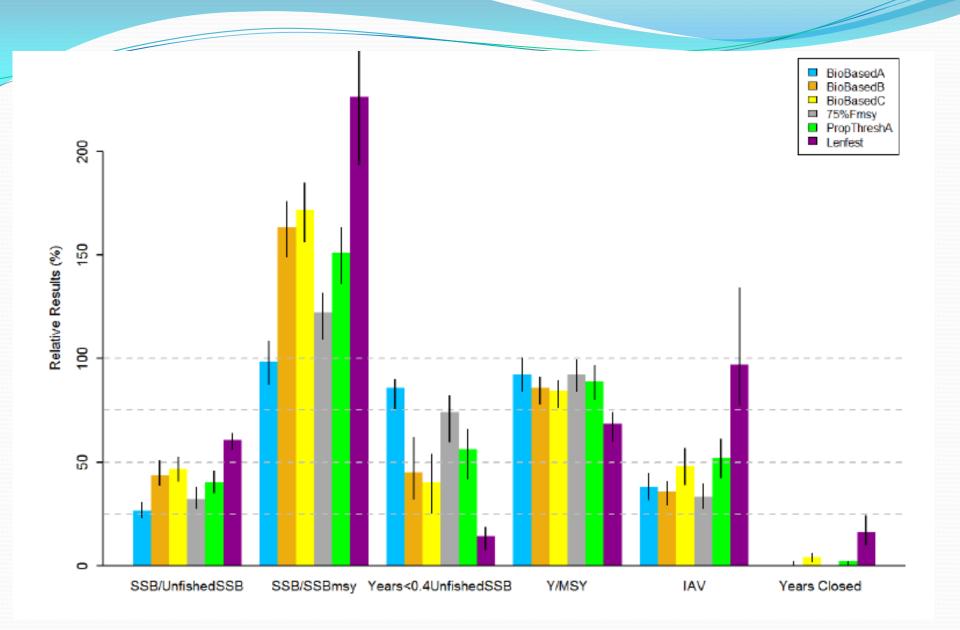

Herring consumption by bluefin tuna and blue sharks; Saw 54, Figure A6-7

BFT & BS Consumption of Herring

Herring consumption by seabirds; Saw 54, Figure A6-8

Seabird Consumption of Herring




Atlantic herring status

- Not overfished; Overfishing not occurring
- Constant catch ~100,000 mt
- Unfished SSB est = 845,176 mt
- Retrospective-adjusted 2014 SSB = 622,997 mt (74%)

Control rule performance

- Six scenarios compared:
 - Status quo (F_{msy}; o.5 SSB_{msy} threshold)
 - Constant F (F=0.75 F_{msy})
 - Biomass based B (0.5 F_{msy} ; SSB_{msy} threshold ~ 0.25 SSB_o)
 - Biomass based C (0.5 F_{msy} ; 1.25 SSB_{msy} threshold ~ 0.31 SSB_{o})
 - Proportional escapement (F_{msy}-> SSB_o)
 - Lenfest (0.5 F_{msy}; 0.75 SSB_o threshold)

Comparative results

Tradeoffs in average biomass, yield, and risk of closure

- Biomass
 - Lenfest (only one to exceed 50% SSB_o)
 - Biobased B & C
 - Proportional escapement
 - Constant F
 - Status quo (25-30% SSB_o)

Control rule simulations

- High M phase (time-varying) partly due to trends in consumption.
- Control rule simulations used fixed steepness parameter, estimated uncertainty applied
- Steepness parameter associated with high M/higher consumption phase

Control rule simulations

- Majority of consumption by fish are pre-recruits
- Predation affects steepness parameter
- Appropriate buffer for ecosystem needs if steepness parameter accounts for predation?

- Incomplete, untested, need parameterization
- Many apply to portion of herring stock area
- Most would take a year or more of dedicated work to apply to assess herring control rules
- Others do not apply specifically to herring
- Some do not incorporate prey abundance feedback to predator productivity

- <u>Kraken (Gamble and Link 2009; Gamble et al in prep)</u>
 - Georges Bank only
 - Parameter estimation and performance testing underway
 - Simulations run, but estimation mode being developed
- <u>Atlantis (Link et al 2010, 2011)</u>
 - End-to-tend spatial ecosystem model
 - Incorporation of control rule performance needs integration
 - Model being updated to version 1.5

- Dynamic Food Web (Lucey et al. in prep)
 - Implementation of Ecopath/Ecosym
 - Initiated for Georges Bank only
 - Incorporates estimated uncertainty in food web parameters
- <u>Multispecies Statistical Catch at Age (Curti et al 2013)</u>
 - Three species; 9 species extension planned
 - No prey feedback

- <u>Hydra (Gaichas et al in prep; based on Hall et al 2006)</u>
 - Multispecies size structured model
 - Georges Bank only
 - No prey feedback
- <u>EMAX Food Web (Link et al. 2006, 2008a; 2008b)</u>
 - Guild model
 - Includes prey feedback loop

- MSVPA-X (Tyrell et al. 2008; Garrison et al. 2010)
 - No prey feedback loop
- <u>MS-PROD (Gamble and Link 2009; Gaichas et al. 2012)</u>
 - Strategic simulations
 - No prey feedback loop

Ecosystem model status

- Although model development efforts are pretty far along, useful models to evaluate effects of herring control rules on the ecosystem are 2-5 years away
- Model verification, testing, and peer review
- More time to develop Amendment 8 control rule options would allow time to develop a more general forage management policy

Climate change

- Has the distribution of major herring predators changed relative to herring distribution (temperature, depth, latitude)?
- Changes in thermocline development and migratory behavior?
 - Patchiness and availability
 - Survey catchability
- Changes in physiology and growth
- Changes in ecosystem communities and novel communities

Ecosystem conclusions

- <u>Models</u>
 - Abandon concept of MSY and other types of single species reference points
 - Reference points more dynamic and account for trophic interactions
 - More comprehensive and accurate advice; account for uncertainty
- <u>Difficult to predict whether any specific species will benefit</u> <u>from greater prey availability</u>
 - Interactions and indirect effects
 - Density-dependent effects on herring condition factor and energy content (e.g. Golet et al
 - Dynamics sorted out with full food web models; subsets can give misleading results

Lenfest report – Little fish, Big

impact – April 2012

- Examined Ecosym-modeled effects for 10 systems
- Predator response to the exploitation of prey (PREP equation)
- Introduced an unknown amount of stochasticity (constant across ecosystems?) to assess risk.
- Recommended general policy for forage fish management, e.g. hockey stick control rule with high B target and 50-75% $F_{msy} = F_{lim}$
- May not be applicable to Georges Bank or NW Atlantic ecosystem
- PREP equation parameters have not been estimated here

Lenfest report – Little fish, Big impact - 2012

TABLE 6.1

Ecosystems and their forage fish species

The forage fish species and species groups analyzed in our research, along with their respective ecosystems and the EwE models' authors.

Ecosystem	Forage fish species or group (as developed by modeler)	Model authors and reference
Aleutian Islands	 herring (Clupea pallasii pallasii) sand lance (Ammodytes hexapterus) small pelagics (Mallotus villosus, Engraulis mordax, Scomber japonicus, Osmeridae) 	Guénette et al. (2006)
Baltic Sea	herring (Clupea harengus) sprat (Sprattus sprattus)	Hansson et al. (2007)
Barents Sea	 capelin (Mallotus villosus) herring (Clupea harengus) pelagic planktivorous fish (Ammodytidae, Trisopterus esmarkii, Micromesistius poutassou, Argentine spp., Cyclopterus lumpus, Sprattus sprattus, Osmeridae, Clupeidae) 	Blanchard et al. (2002)
Chesapeake Bay	 alewives & herring (Alosa pseudoharengus and A. aestivalis) American shad (Alosa sapidissima and A. mediocris) Atlantic menhaden (Brevoortia tyrannus) 	Christensen et al. (2009)
Gulf of Mexico	 bay anchovy (Anchoa mitchilli) Gulf menhaden (Brevoortia patronus) scaled sardine (Harengula jaguana) threadfin herring (Dorosoma petenense) 	Walters et al. (2006)
Humboldt Current	 Peruvian anchoveta (Engraulis ringens) sardine (Sardinops sagax) 	Taylor et al. (2008)
Northern California Current	 euphausiids (order Euphausiacea) forage fish (Engraulis mordax, Clupea harengus pallasi, Thaleichthys pacificus, Allosmerus elongates) sardine (Sardinops sagax caerulea) 	Field et al. (2006)
North Sea	 herring (Clupea harengus) sand eel (Ammodytes spp.) sprat (Sprattus sprattus) 	Mackinson and Daskalov (2007)
Southeast Alaska	 herring (Clupea harengus) sand lance (Ammodytes hexapterus) small pelagics (Mallotus villosus, Engraulis mordax, Scomber japonicus, Osmeridae) 	Guénette et al. (2006)
Western English Channel	 herring (Clupea harengus) pilchard (Sardina pilchardus) sand eel (Ammodytes tobianus) sprat (Sprattus sprattus) 	Araujo et al. (2005)

Ecosystem conclusions

- Lenfest forage management approach
 - Much more conservative than MSY-based control rule (threshold at 75% Bo, rather than 25% Bo)
 - Risk adverse approach for systems lacking good information about dynamics
 - Focus on upwelling systems fewer stocks; strong trophic links
- <u>Gulf of Maine, Georges Bank, and Southern New</u> <u>England/Mid-Atlantic ecosystem</u>
 - Complex
 - Not upwelling
 - Many top predators are generalists

Ecosystem conclusions

- Spatial and availability concerns
 - Control rule based on something other than total biomass
 - School size
 - School density
 - Spatial allocation based on localized indicators

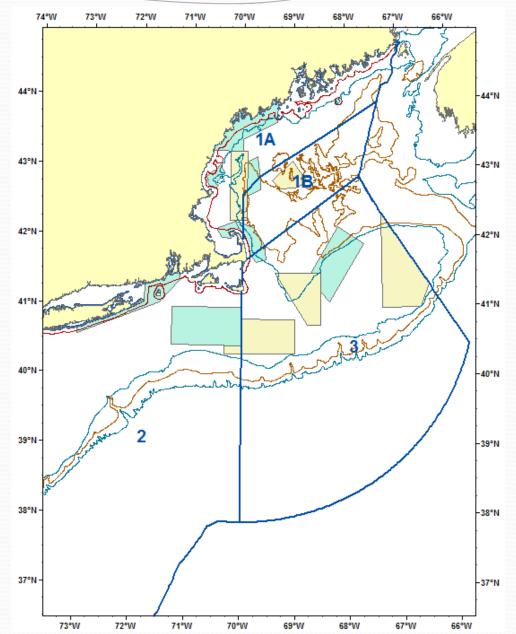
2014 Annual Atlantic Herring Specifications (January 1-December 31)			
Stock	Atlantic Herring		
Overfishing Limit (OFL)	136,000 mt		
Acceptable Biological Catch (ABC)	114,000 mt		
Annual Catch Limit (ACL)	107,800 mt		
Domestic Annual Harvest	107,800 mt		
Border Transfer	4,000 mt		
Domestic Annual Processing	103,800 mt		
U.S. At-Sea Processing	0 mt		
Optimal Yield (OY)	107,800 mt		

Border Transfer: 4,000 mt of Atlantic herring has been allocated for the use of border transfer between U.S. commercial fishing vessels and Canadian herring transport vessels.

Research Set Aside: Up to 3-percent of the stock-wide herring ACL can be set-aside for use in research.

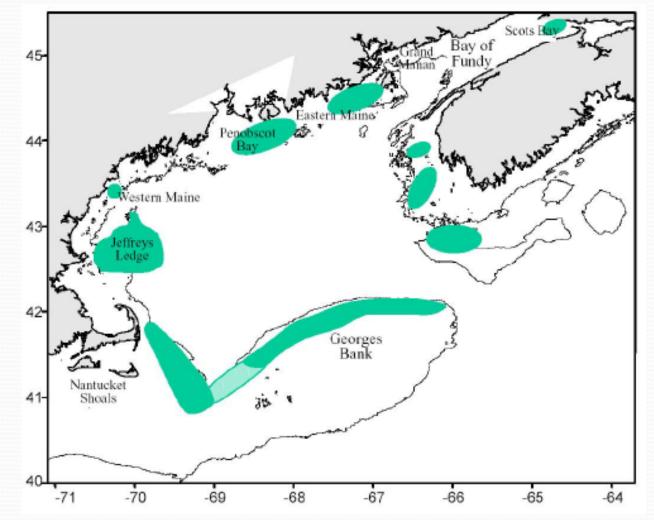
	2014 Atlantic Herring	g Research Set-Aside
Area 1A		936 mt
Area 1B		138 mt
Area 2		900 mt
Area 3		1,260 mt

Final Commercial Quota:

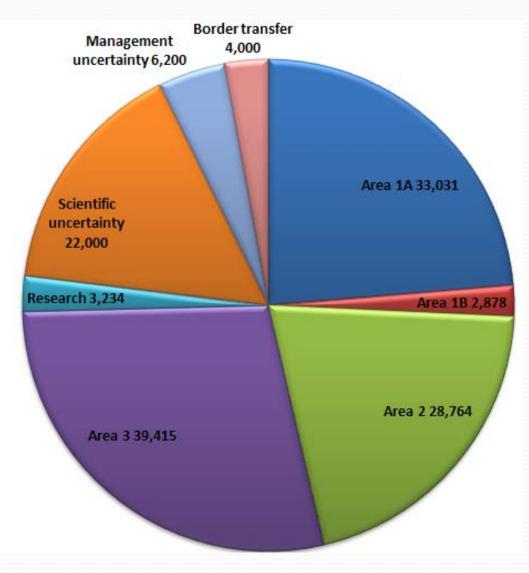

2014 Area Sub-ACLs*		
Area 1A†	33,031 mt	
Area 1B++	2,878 mt	
Area 2	28,764 mt	
Area 3	39,415 mt	

* Area sub-ACLs include overage deductions and carryover from 2012, and exclude research set-aside mt.

+Area 1A Sub-ACL: The Area 1A sub-ACL is divided into two seasons: January 1 - May 31 and June 1 - December 31. Vessels may not fish for, possess, or retain herring from January 1 through May 31 in Area 1A.


++Area 1B Sub-ACL: The Area 1B sub-ACL is divided into two seasons: January 1 - April 30, and May 1 - December 31. Vessels may not fish for, possess, or retain herring from January 1 through April 30 in Area 1B.

Herring management areas


Generalized major herring spawning

areas (from Overholtz 2014)

46

ABC allocation

Considerations

- Most predatory fish in the NE Ecosystem are generalists; prey on young herring and pre-recruits
- Tunas and marine mammals that rely on a herring diet
- Atlantic herring biomass is well above SSB_{msy} (74% SSB_o)and is likely to remain well above SSB_{msy} (or higher thresholds) for some time with current ABCs.
- Abundance of alternative forage species is an important consideration

Considerations

- Time is needed to parameterize, validate, and conduct peer review of ecosystem models applied to NE and evaluate the effects of various herring control rules on our ecosystem
- Forage white paper being developed and may become the basis for forage species management in a fishery ecosystem plan.

Considerations

- Local availability may be more import to some species and industries than total stock size
- Local availability cannot be addressed with a stockwide control rule, but localized harvests can be managed with sub-ACLs and season/area fishing restrictions, which currently exist and could be modified.