

10. MONKFISH (June 23-25, 2020)

ĦΙ

Evaluation of Methods to Estimate Monkfish Discards for Calculating

Total Allowable Landings

Cate O'Keefe, PhD Fishery Applications Consulting Team, LLC New England Fishery Management Council 24 June 2020

Introduction

- Fishery Applications Consulting Team, LLC
 - Consulting business specializing in science-based solutions for sustainable fisheries
 - management
 - Established in February 2020
 - Services:
 - Fishery Management Plan evaluation
 - Technical peer review
 - Science communication and outreach
 - Analysis of fishery dependent data
 - Meeting facilitation

- Massachusetts Division of Marine Fisheries
- UMass School for Marine Science and Technology (SMAST)

www.fisheryapps.com

Overview

Background – reminder of process to set Total Allowable Landings (TALs)

• 2020 NEFMC Monkfish Priority – purpose of the project

• Evaluation of discard estimation methods – current and alternative methods

• Factors that influence monkfish discards – ranking of influences

• Findings and recommendations – possible alternative approach for TALs

Questions and discussion

Background – Monkfish TAL

- 2019 Monkfish Operational Assessment (NEFSC, 2020)
 - Index-based method that calculates the proportional rate of change in smoothed NEFSC survey indices over three most recent years (2016-2018)
 - Rate of change is applied to current ABC to revise catch limits
 - Survey increase for Northern area (range of change $1.2 1.3 = ^220\%$ increase)
 - Survey stable for Southern area (range of change 0.96 1.04 = no change)
- 2020-2022 Monkfish Specification (NEFMC, 2019)
 - ABC: Updated based on assessment results 10% increase North; Status Quo South
 - ACT: 3% Management Uncertainty Buffer
 - TAL: ACT minus discards (discards "taken off the top")
 - Discards: Monkfish discards and total catch from three most recent years (2016-2018) averaged (all gears combined) to calculate Discard % of Catch
 - North: 18.2%; South: 50.8%

Monkfish Specifications 2020-2022

NEFMC 2020 Priority – Monkfish Discards

- Monkfish specs are set every three years using data from previous three years
 - 2020-2022 specs were set in 2019 using data from 2016-2018
- Assumption that most recent discards are best estimate of future discards
 - North: increase in discard % of catch from 13.9% to 18.2%
 - South: increase in discard % of catch from 24.0% to 50.8%
- 2015 monkfish recruitment was a factor in increased discarding 2016-2018
 - Growth of 2015 year class entering the fishery 2019 and beyond
- Applying data from high discard period to future period may not accurately characterize actual discarding or available biomass to TALs

NEFMC 2020 Priority – Monkfish Discards

NEFMC 2020 Priority for Monkfish (December, 2019):

Conduct an analysis of alternative methods for estimating discards of monkfish to apply to future specifications and consider available information on discard mortality. If warranted, consider adjusting specifications for FY2021-2022.

Evaluation of Approaches

- Realized vs. estimated discards
- Multi-year averaging with different reference periods
- Gear-specific discard estimates
- Long-term discard trends
- Utility of recruitment indices
- Evaluation of factors that influence discarding

Summary of Findings

- Current approach (3-year average) performed well when discards were stable, but did not perform well after strong 2015 recruitment
 - Shorter and longer reference periods (2-year and 5-year) were not an improvement
- Gear-specific approach did not improve performance and has potential unintended consequences for management
- Longer term (2008-2015; SBRM period) mean and median discard % of catch performed well under average recruitment conditions
- Combining long-term mean or median discard % of catch to set TALs, with monitoring of recruitment indices and greater discard assumptions when strong recruitment occurs, may improve monkfish management
 - Recruitment indices are informative for predicting discards
 - Surveys and catch data can detect recruitment events
- Several factors influence monkfish discarding, but major driver over long-term appears to be monkfish recruitment and large year-classes

Realized vs. Estimated Discards

Realized vs. estimated discard % of catch (2019 Monkfish Assessment; SBRM)

						1						
Fishing Year	Land	Discard	Total Catch	Realized Discard % Catch	FMP Discard % Catch	Land	Discard	Total Catch	Realized Discard % Catch	FMP Discard % Catch		
2014	3402	552	3954	14.0%	13.4%	5135	1724	6859	25.1%	26.0%		
2015	4027	603	4630	13.0%	13.4%	4609	1235	5844	21.1%	26.0%		
2016	4633	875	5508	15.9%	13.4%	4422	2777	7199	38.6%	26.0%		
2017	7008	886	7894	11.2%	13.9%	3893	5250	9143	57.4%	24.0%		
2018	5954	2161	8115	26.6%	13.9%	4465	5150	9615	53.6%	24.0%		
2019					13.9%					24.0%		
2020					18.2%					50.8%		
2021					18.2%					50.8%		
2022					18.2%					50.8%		

Multi-Year Average Discards

Alternative reference periods (2-year and 5-year)

- Current approach
 - 3-year average
 - "chasing" discards
- 5-year and 2-year
 - Similar performance to current approach in most recent years
- Underestimated discards related to recruitment in 2015
- Potential overestimate for 2020-2022

Gear-Specific Discards

2015

2016

Long-term (2008-2018; SBRM) trends in catch and discards by gear

• North:

- Consistent catch by all gears
 - *2011 data issue
- Variability in discards by trawl and dredge
- Discard estimates driven by trawl catch

• South:

- Consistent catch and discards by all gears, except most recent years
- High dredge discards, but low trawl and gillnet discards

Combined:

 Estimates are weighted by total catch to account for differences in catch by gear

Long-Term Trends

• Long-term (2008-2015; SBRM) weighted mean and median discard % of catch performed well compared to realized discards – period of average recruitment

Area	08-15 Wtd Mean	08-15 Median					
NORTH	12.8%	12.9%					
SOUTH	25.6%	26.7%					

Recruitment Index - Surveys

- Monkfish recruitment indices may be useful indicators of future discards
 - Several regional surveys and commercial catch data can detect strong recruitment events
 - NEFSC Fall and Spring Surveys, ME/NH Inshore Survey, NEFSC/VIMS Scallop Dredge Survey
 - Identifying "strong" recruitment events could be based on survey observations of recruit abundance (e.g., above 75th percentile)

Growth Rate

Fishery
Application
Consulting
Team

- Information about growth rate at early ages could inform future discards
 - Growth estimated from modal progression of 2015 year-class (NEFSC, 2020)
 - Age 1 growth to ~25cm
 - Age 2 growth to ~40cm (maturity)
 - Age 3 growth over 43+cm (exploitable)
- Enter fishery within 3-5 years of recruitment to surveys
 - 2021-2022 realized discards likely will be lower than values assumed in FMP

Discard Mortality

Monkfish discard mortality is currently assumed at 100% for all gear types

- Scallop Dredge: recent studies of monkfish survival post capture
 - Estimate of ~27% discard mortality from dredge gear (Rudders and Sulikowski, 2019)
 - Low level of physical trauma (~20% of sampled fish) in assessment of reflex response and injury condition after being caught in dredge gear (Weissman et al., 2018)
- Trawl gear: older studies of monkfish discard mortality
 - ~70% mortality assumed in original Monkfish FMP (1998)
 - MA Division of Marine Fisheries inshore study estimated 8-57% discard mortality
- Still a lot of uncertainty about monkfish discard mortality in all gears
 - Possible future research priority (Monkfish RSA; Research Track Assessment)

Influencing Factors

Fishery Application Consulting Team

1. Monkfish biology

Recruitment

- 2015 year-class largest observed in North and South since 1970s
- No known stock-recruit relationship
- Lack of information about recruitment drivers
- Surveys can detect strong recruitment events

Growth

- Rapid growth at early age
- Enter fishery within 3-4 years of recruitment to surveys
- Year-classes can be tracked through survey observations

Distribution

- Widely distributed in both management areas
- Overlap with non-target fisheries

Influencing Factors

2. Non-Target Fisheries Management

Scallop Fishery

- Increased effort in Mid-Atlantic in 2016-2018 due to rotational management
- Increased dredge tow time due to avoidance of nematodes and poor meat quality
- Low to zero incentive to land monkfish due to price differential with scallops

Groundfish Fishery

- Historically low discards, over 80% of catch landed
- Monkfish are targeted or caught incidentally
- Increased targeting in recent years reflective of incentives to land monkfish despite price declines
- TAL in northern area has been nearly fully utilized recently

Influencing Factors

3. Monkfish Market and Price

- Increase in landings and decrease in price in recent years for all market categories
- Domestic "oversupply" and reduced consumer demand (not a "value-added" product)
- Global market influences
 - Foreign products flooded market lower price and differing qualities

Summary of Findings

- Current approach (3-year average) performed well when discards were stable, but did not perform well after strong 2015 recruitment
 - Shorter and longer reference periods (2-year and 5-year) were not an improvement
- Gear-specific approach did not improve performance and has potential unintended consequences for management
- Longer term (2008-2015; SBRM period) mean and median discard % of catch performed well under average recruitment conditions
- Combining long-term mean or median discard % of catch to set TALs, with monitoring of recruitment indices and greater discard assumptions when strong recruitment occurs, may improve monkfish management
 - Recruitment indices are informative for predicting discards
 - Surveys and catch data can detect recruitment events
- Several factors influence monkfish discarding, but major driver over long-term appears to be monkfish recruitment and large year-classes

Acknowledgements

- New England Fishery Management Council
 - Award #FNA20NMF4410001
 - Chris Kellogg, Tom Nies, Janice Plante
 - Monkfish Plan Development Team
- Industry Participants
 - Terry Alexander
 - Cassie Canastra
 - Peter Hughes
 - Eric Reid
 - Kevin Wark

Alternative Approach Proposal

- Maintain 3-year monkfish specification process
 - Seems to perform well in recent years; stability in resource and fishery
- Use of long-term (2008-2015; SBRM period) mean/median discard % of catch
 - North = 12.8%
 - South = 26.7%
- Review recruitment indices from survey and catch data for strong recruitment
 - Average recruitment
 - Maintain specifications update long-term average as part of specification process
 - "Strong" recruitment detected
 - Increase discard estimate that is subtracted from ACT to set TALs for each area
 - Process
 - Define threshold for "strong" recruitment (e.g., above 75th percentile)
 - Define "increased discard level" (e.g., 2015 year class increased discards by 50% in 207-2018)
 - Define timing to update TAL (e.g., 3-year spec package; rule-making between spec years)

Example – Average Recruitment

Framework 10 (17-19)

Specs 20-22

NEW Specs 20-22

Example – Strong Recruitment

Catch History

	NORTH							SOUTH								
Fishing	ABC	АСТ	TAL	Landings	andings % ABC % ACT % TAL ABC ACT TAL	TAL	Landings	% ABC	% ACT	% TAL						
Year	700	701	IAL	(mt)	Caught	Caught	Caught	700	701	ותב	(mt)	Caught	Caught	Caught		
2007			5,000	5,050			101%			5,100	7,180			141%		
2008			5,000	3,528			71%			5,100	6,751			132%		
2009			5,000	3,344			67%			5,100	4,800			94%		
2010			5,000	2,834			57%			5,100	4,484			88%		
2011	7,592	6,567	5,854	3,699	49%	56%	63%	12,316	11,513	8,925	5,801	47%	50%	65%		
2012	7,592	6,567	5,854	3,920	52%	60%	67%	12,316	11,513	8,925	5,184	42%	45%	58%		
2013	7,592	6,567	5,854	3,596	47%	55%	61%	12,316	11,513	8,925	5,088	41%	44%	57%		
2014	7,592	6,567	5,854	3,403	45%	52%	58%	12,316	11,513	8,925	5,415	44%	47%	61%		
2015	7,592	6,567	5,854	4,080	54%	62%	70%	12,316	11,513	8,925	4,733	38%	41%	53%		
2016	7,592	6,567	5,854	5,447	72%	83%	93%	12,316	11,513	8,925	4,345	35%	38%	49%		
2017	7,592	7,364	6,338	6,807	90%	92%	107%	12,316	11,947	9,011	3,802	31%	32%	42%		
2018	7,592	7,364	6,338	6,168	81%	84%	97%	12,316	11,947	9,011	4,600	37%	39%	51%		

Catch History

				NORT	Н		SOUTH						
Fishing Year	TAL	Limit Cat. A,C	Limit Cat. B,D	DAS	Landings (mt)	% TAL Caught	TAL	Limit Cat. A,C,G	Limit Cat. B,D,H	DAS	Landings (mt)	% TAL Caught	
2007	5,000	1,250	470	31	5,050	101%	5,100	550	450	23	7,180	141%	
2008	5,000	1,250	470	31	3,528	71%	5,100	550	450	23	6,751	132%	
2009	5,000	1,250	470	31	3,344	67%	5,100	550	450	23	4,800	94%	
2010	5,000	1,250	470	31	2,834	57%	5,100	550	450	23	4,484	88%	
2011	5,854	1,250	600	40	3,699	63%	8,925	550	450	28	5,801	65%	
2012	5,854	1,250	600	40	3,920	67%	8,925	550	450	28	5,184	58%	
2013	5,854	1,250	600	40	3,596	61%	8,925	550	450	28	5,088	57%	
2014	5,854	1,250	600	45	3,403	58%	8,925	610	500	32	5,415	61%	
2015	5,854	1,250	600	45	4,080	70%	8,925	610	500	32	4,733	53%	
2016	5,854	1,250	600	45	5,447	93%	8,925	700	575	37	4,345	49%	
2017	6,338	1,250	600	45	6,807	107%	9,011	700	575	37	3,802	42%	
2018	6,338	1,250	600	45	6,168	97%	9,011	700	575	37	4,600	51%	