$=$

New England Fishery Management Council

Evaluation of Methods to Estimate Monkfish Discards for Calculating

 Total Allowable LandingsCate O'Keefe, PhD
Fishery Applications Consulting Team, LLC New England Fishery Management Council 24 June 2020

Introduction

- Fishery Applications Consulting Team, LLC
- Consulting business specializing in science-based solutions for sustainable fisheries management
- Established in February 2020
- Services:
- Fishery Management Plan evaluation
- Technical peer review
- Science communication and outreach
- Analysis of fishery dependent data
- Meeting facilitation
- Cate O’Keefe

www.fisheryapps.com

- Massachusetts Division of Marine Fisheries
- UMass School for Marine Science and Technology (SMAST)
- Background - reminder of process to set Total Allowable Landings (TALs)
- 2020 NEFMC Monkfish Priority - purpose of the project
- Evaluation of discard estimation methods - current and alternative methods
- Factors that influence monkfish discards - ranking of influences
- Findings and recommendations - possible alternative approach for TALs
- Questions and discussion

Background - Monkfish TAL

- 2019 Monkfish Operational Assessment (NEFSC, 2020)
- Index-based method that calculates the proportional rate of change in smoothed NEFSC survey indices over three most recent years (2016-2018)
- Rate of change is applied to current ABC to revise catch limits
- Survey increase for Northern area (range of change $1.2-1.3=\sim 20 \%$ increase)
- Survey stable for Southern area (range of change 0.96-1.04 = no change)

- 2020-2022 Monkfish Specification (NEFMC, 2019)

- ABC: Updated based on assessment results - 10\% increase North; Status Quo South
- ACT: 3\% Management Uncertainty Buffer
- TAL: ACT minus discards (discards "taken off the top")
- Discards: Monkfish discards and total catch from three most recent years (2016-2018) averaged (all gears combined) to calculate Discard \% of Catch
- North: 18.2\%; South: 50.8\%

Monkfish Specifications 2020-2022

ABC $=$ Acceptable Biological Catch
ACL = Annual Catch Limit
ACT = Annual Catch Target
TAL = Total Allowable Landings

NEFMC 2020 Priority - Monkfish Discards

- Monkfish specs are set every three years using data from previous three years
- 2020-2022 specs were set in 2019 using data from 2016-2018
- Assumption that most recent discards are best estimate of future discards
- North: increase in discard \% of catch from 13.9\% to 18.2\%
- South: increase in discard \% of catch from 24.0% to 50.8\%
- 2015 monkfish recruitment was a factor in increased discarding 2016-2018
- Growth of 2015 year class - entering the fishery 2019 and beyond
- Applying data from high discard period to future period may not accurately characterize actual discarding or available biomass to TALs

NEFMC 2020 Priority - Monkfish Discards

- NEFMC 2020 Priority for Monkfish (December, 2019):

Conduct an analysis of alternative methods for estimating discards of monkfish to apply to future specifications and consider available information on discard mortality. If warranted, consider adjusting specifications for FY2021-2022.

Evaluation of Approaches

- Realized vs. estimated discards
- Multi-year averaging with different reference periods
- Gear-specific discard estimates
- Long-term discard trends
- Utility of recruitment indices
- Evaluation of factors that influence discarding

Summary of Findings

- Current approach (3-year average) performed well when discards were stable, but did not perform well after strong 2015 recruitment
- Shorter and longer reference periods (2-year and 5-year) were not an improvement
- Gear-specific approach did not improve performance and has potential unintended consequences for management
- Longer term (2008-2015; SBRM period) mean and median discard \% of catch performed well under average recruitment conditions
- Combining long-term mean or median discard \% of catch to set TALs, with monitoring of recruitment indices and greater discard assumptions when strong recruitment occurs, may improve monkfish management
- Recruitment indices are informative for predicting discards
- Surveys and catch data can detect recruitment events
- Several factors influence monkfish discarding, but major driver over long-term appears to be monkfish recruitment and large year-classes

Realized vs. Estimated Discards

- Realized vs. estimated discard \% of catch (2019 Monkfish Assessment; SBRM)

Multi-Year Average Discards

- Alternative reference periods (2-year and 5-year)

- Current approach
- 3-year average
- "chasing" discards
- 5-year and 2-year
- Similar performance to current approach in most recent years
- Underestimated discards related to recruitment in 2015
- Potential overestimate for 2020-2022

Gear-Specific Discards

- Long-term (2008-2018; SBRM) trends in catch and discards by gear
- North:
- Consistent catch by all gears
- *2011 data issue
- Variability in discards by trawl and dredge
- Discard estimates driven by trawl catch
- South:
- Consistent catch and discards by all gears, except most recent years
- High dredge discards, but low trawl and gillnet discards
- Combined:
- Estimates are weighted by total catch to account for differences in catch by gear

CATCH

Long-Term Trends

- Long-term (2008-2015; SBRM) weighted mean and median discard \% of catch performed well compared to realized discards - period of average recruitment
30\%

Recruitment Index - Surveys

- Monkfish recruitment indices may be useful indicators of future discards
- Several regional surveys and commercial catch data can detect strong recruitment events
- NEFSC Fall and Spring Surveys, ME/NH Inshore Survey, NEFSC/VIMS Scallop Dredge Survey
- Identifying "strong" recruitment events could be based on survey observations of recruit abundance (e.g., above $75^{\text {th }}$ percentile)

NORTH

SOUTH

Growth Rate

- Information about growth rate at early ages could inform future discards
- Growth estimated from modal progression of 2015 year-class (NEFSC, 2020)
- Age 1 growth to $\sim 25 \mathrm{~cm}$
- Age 2 growth to $\sim 40 \mathrm{~cm}$ (maturity)
- Age 3 growth over 43+cm (exploitable)
- Enter fishery within 3-5 years of recruitment to surveys
- 2021-2022 realized discards likely will be lower than values assumed in FMP

Discard Mortality

- Monkfish discard mortality is currently assumed at 100% for all gear types
- Scallop Dredge: recent studies of monkfish survival post capture
- Estimate of $\sim 27 \%$ discard mortality from dredge gear (Rudders and Sulikowski, 2019)
- Low level of physical trauma (~20\% of sampled fish) in assessment of reflex response and injury condition after being caught in dredge gear (Weissman et al., 2018)
- Trawl gear: older studies of monkfish discard mortality
- ~70\% mortality assumed in original Monkfish FMP (1998)
- MA Division of Marine Fisheries inshore study estimated 8-57\% discard mortality
- Still a lot of uncertainty about monkfish discard mortality in all gears
- Possible future research priority (Monkfish RSA; Research Track Assessment)

Influencing Factors

1. Monkfish biology

- Recruitment
- 2015 year-class - largest observed in North and South since 1970s
- No known stock-recruit relationship
- Lack of information about recruitment drivers
- Surveys can detect strong recruitment events
- Growth
- Rapid growth at early age
- Enter fishery within 3-4 years of recruitment to surveys
- Year-classes can be tracked through survey observations
- Distribution
- Widely distributed in both management areas
- Overlap with non-target fisheries

Influencing Factors

2. Non-Target Fisheries Management

- Scallop Fishery

- Increased effort in Mid-Atlantic in 2016-2018 due to rotational management
- Increased dredge tow time due to avoidance of nematodes and poor meat quality
- Low to zero incentive to land monkfish due to price differential with scallops

- Groundfish Fishery

- Historically low discards, over 80\% of catch landed
- Monkfish are targeted or caught incidentally
- Increased targeting in recent years reflective of incentives to land monkfish despite price declines
- TAL in northern area has been nearly fully utilized recently

Influencing Factors

3. Monkfish Market and Price

- Increase in landings and decrease in price in recent years for all market categories
- Domestic - "oversupply" and reduced consumer demand (not a "value-added" product)
- Global market influences
- Foreign products flooded market - lower price and differing qualities

Total Monkfish

Summary of Findings

- Current approach (3-year average) performed well when discards were stable, but did not perform well after strong 2015 recruitment
- Shorter and longer reference periods (2-year and 5-year) were not an improvement
- Gear-specific approach did not improve performance and has potential unintended consequences for management
- Longer term (2008-2015; SBRM period) mean and median discard \% of catch performed well under average recruitment conditions
- Combining long-term mean or median discard \% of catch to set TALs, with monitoring of recruitment indices and greater discard assumptions when strong recruitment occurs, may improve monkfish management
- Recruitment indices are informative for predicting discards
- Surveys and catch data can detect recruitment events
- Several factors influence monkfish discarding, but major driver over long-term appears to be monkfish recruitment and large year-classes

Acknowledgements

- New England Fishery Management Council
- Award \#FNA20NMF4410001
- Chris Kellogg, Tom Nies, Janice Plante
- Monkfish Plan Development Team
- Industry Participants
- Terry Alexander
- Cassie Canastra
- Peter Hughes
- Eric Reid
- Kevin Wark

Alternative Approach Proposal

- Maintain 3-year monkfish specification process
- Seems to perform well in recent years; stability in resource and fishery
- Use of long-term (2008-2015; SBRM period) mean/median discard \% of catch
- North = 12.8\%
- South $=26.7 \%$
- Review recruitment indices from survey and catch data for strong recruitment
- Average recruitment
- Maintain specifications - update long-term average as part of specification process
- "Strong" recruitment detected
- Increase discard estimate that is subtracted from ACT to set TALs for each area
- Process
- Define threshold for "strong" recruitment (e.g., above $75^{\text {th }}$ percentile)
- Define "increased discard level" (e.g., 2015 year class increased discards by 50\% in 207-2018)
- Define timing to update TAL (e.g., 3-year spec package; rule-making between spec years)

Example - Average Recruitment

NEW Specs 20-22

Framework 10 (17-19)

Specs 20-22

NEW Specs 20-22

Management Uncertainty (-3\%)

TAL = ACT - Discards
$8,757 \mathrm{mt}$

Example - Strong Recruitment

Framework 10 (17-19)
SFMA ACL = ABC
$12,316 \mathrm{mt}$ Management Uncertainty (-3\%)

ACT $=97 \%$ of ACL

$11,947 \mathrm{mt}$
Discards (-26.7\%)

Specs Adjustment 18-19

TAL = ACT - Discards
TAL = ACT - Discards

Catch History

	NORTH							SOUTH						
Fishing Year	ABC	ACT	TAL	$\begin{array}{\|c\|} \hline \text { Landings } \\ (\mathrm{mt}) \end{array}$	\% ABC Caught	\% ACT Caught	\% TAL Caught	ABC	ACT	TAL	$\begin{gathered} \text { Landings } \\ (\mathrm{mt}) \end{gathered}$	\% ABC Caught	\% ACT Caught	\% TAL Caught
2007			5,000	5,050			101\%			5,100	7,180			141\%
2008			5,000	3,528			71\%			5,100	6,751			132\%
2009			5,000	3,344			67\%			5,100	4,800			94\%
2010			5,000	2,834			57\%			5,100	4,484			88\%
2011	7,592	6,567	5,854	3,699	49\%	56\%	63\%	12,316	11,513	8,925	5,801	47\%	50\%	65\%
2012	7,592	6,567	5,854	3,920	52\%	60\%	67\%	12,316	11,513	8,925	5,184	42\%	45\%	58\%
2013	7,592	6,567	5,854	3,596	47\%	55\%	61\%	12,316	11,513	8,925	5,088	41\%	44\%	57\%
2014	7,592	6,567	5,854	3,403	45\%	52\%	58\%	12,316	11,513	8,925	5,415	44\%	47\%	61\%
2015	7,592	6,567	5,854	4,080	54\%	62\%	70\%	12,316	11,513	8,925	4,733	38\%	41\%	53\%
2016	7,592	6,567	5,854	5,447	72\%	83\%	93\%	12,316	11,513	8,925	4,345	35\%	38\%	49\%
2017	7,592	7,364	6,338	6,807	90\%	92\%	107\%	12,316	11,947	9,011	3,802	31\%	32\%	42\%
2018	7,592	7,364	6,338	6,168	81\%	84\%	97\%	12,316	11,947	9,011	4,600	37\%	39\%	51\%

	NORTH						SOUTH					
Fishing Year	TAL	Limit Cat. A, C	Limit Cat. B,D	DAS	Landings (mt)	\% TAL Caught	TAL	Limit Cat. A,C,G	Limit Cat. B,D,H	DAS	Landings (mt)	\% TAL Caught
2007	5,000	1,250	470	31	5,050	101\%	5,100	550	450	23	7,180	141\%
2008	5,000	1,250	470	31	3,528	71\%	5,100	550	450	23	6,751	132\%
2009	5,000	1,250	470	31	3,344	67\%	5,100	550	450	23	4,800	94\%
2010	5,000	1,250	470	31	2,834	57\%	5,100	550	450	23	4,484	88\%
2011	5,854	1,250	600	40	3,699	63\%	8,925	550	450	28	5,801	65\%
2012	5,854	1,250	600	40	3,920	67\%	8,925	550	450	28	5,184	58\%
2013	5,854	1,250	600	40	3,596	61\%	8,925	550	450	28	5,088	57\%
2014	5,854	1,250	600	45	3,403	58\%	8,925	610	500	32	5,415	61\%
2015	5,854	1,250	600	45	4,080	70\%	8,925	610	500	32	4,733	53\%
2016	5,854	1,250	600	45	5,447	93\%	8,925	700	575	37	4,345	49\%
2017	6,338	1,250	600	45	6,807	107\%	9,011	700	575	37	3,802	42\%
2018	6,338	1,250	600	45	6,168	97\%	9,011	700	575	37	4,600	51\%

