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TOR4b  Technical documentation for the CASA length structured stock assessment 
model.   
 
Larry Jacobson and Jui-Han Chang, Northeast Fisheries Science Center, Woods Hole, 
MA. 
    

The stock assessment model described here is based on Sullivan et al.’s (1990) 
CASA model.1  CASA is entirely length-based with population dynamic calculations in 
terms of the number of individuals in each length group during each year.  Age is almost 
completely irrelevant in model calculations.  Unlike many other length-based stock 
assessment approaches, CASA is a dynamic, non-equilibrium model based on a forward 
simulation approach.  CASA incorporates a very wide range of data with parameter 
estimation based on maximum likelihood.  CASA can incorporate prior information 
about parameters such as survey catchability and natural mortality in a quasi-Bayesian 
fashion and MCMC evaluations are practical.  The implementation described here was 
programmed in AD-Model Builder (Otter Research Ltd.).2  
 
 
Population dynamics 
 
 Time steps in the model are years, which are also used to tabulate catch and other 
data.  Recruitment occurs at the beginning of each time step.  All instantaneous rates in 
model calculations are annual (y-1).  The number of years in the model ny is flexible and 
can be changed easily (e.g. for retrospective analyses) by making a single change to the 
input data file.  Millimeters are used to measure body size (e.g. sea scallop shell heights).  
Length-weight relationships should generally convert millimeters to grams.  Model input 
data include a scalar that is used to convert the units for length-weight parameters (e.g. 
grams) to the units of the biomass estimates and landings data (e.g. mt).  The units for 
catch and biomass are usually metric tons.  
 The definition of length groups (or length “bins”) is a key element in the CASA 
model and length-structured stock assessment modeling in general.  Length bins are 
identified in CASA output by their lower bound and internally by their ordinal number.  
Calculations requiring information about length (e.g. length-weight) use the mid-length 

j of each bin.  The user specifies the first length (Lmin) and the size of length bins (Lbin).    
Based on these specifications, the model determines the number of length bins to be used 
in modeling as [ ]binL LLLn )(int1 min−+= ∞ , where L∞ is maximum asymptotic size 
supplied by the user, and int[x] is the integer part of x.   The last length bin in the model 
is always a “plus-group” containing individuals L∞ and larger.  Specifications for length 
data used in tuning the model are separate (see below).   

      

                                                 
1 Original programming in AD-Model Builder by G. Scott Boomer and Patrick J. Sullivan (Cornell 
University), who bear no responsibility for errors in the current implementation. 
2 AD-Model Builder can be used to calculate variances for any estimated or calculated quantity in a stock 
assessment model, based on the Hessian matrix with “exact” derivatives and the delta method. 
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Growth 
In population dynamics calculations, individuals in each size group grow (or not) 

at the beginning of the year, based on the annual growth transition matrix P0(b,a) which 
measures the probability that a survivor in size bin a at the beginning of the previous year 
will grow to bin b at the beginning of the current year (columns index initial size and 
rows index subsequent size).3  Growth probabilities do not include any adjustments for 
mortality and are applied to surviving scallops based on their original size in the 
preceding year. 

There are two options for growth transition matrices.  Under Option 1, a single 
annual growth matrix is calculated internally based on raw shell increment data: 
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where n(b|a) is the number of individuals that started at size a and grew to size b after 
one year in the raw size increment data.   

Under option 2, the user specifies the number of transition matrices to be supplied 
in the input file and then assigns one of the matrices to each year in the model.  All such 
growth matrices must have the same number of length groups.  The number and size 
groups in the model and in the growth matrices should be large enough to accommodate 
the largest maximum size in any year.  If growth varies such that maximum size in some 
time period is lower the maximum value, then the growth transition probabilities for that 
period of maximum size are set to one along the diagonal.  For example, if there were 
five length groups in the model: [20,25), [25,30), [30,35), [35,40) and [40,45+] mm SH 
and the maximum size was 34 mm SH in period one and 44 mm SH in period two, the 
growth transition matrices might look like:  
 

Growth matrix for period 1 
 

Growth matrix for period 2 
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[20,25
) 0.7 0 0 0 0 
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[20,25
) 0.7 0 0 0 0 

[25, 
30) 0.2 0.7 0 0 0 

 

[25, 
30) 0.2 0.7 0 0 0 

[30, 
35) 0.1 0.3 1 0 0 

 

[30, 
35) 0.1 0.2 0.7 0 0 

[35, 
40) 0 0 0 1 0 

 

[35, 
40) 0 0.1 0.2 0.7 0 

[40, 
45) 0 0 0 0 1 

 

[40, 
45) 0 0 0.1 0.3 1 

 
 

 
Abundance, recruitment and mortality 
 Population abundance in each length bin during the first year of the model is: 
  LL NN ,11,1 π=  

                                                 
3  For clarity in bookkeeping, mortality and annual growth calculations are always based on the size on 
January 1. 
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where L is the size bin, and L,1π  is the initial population length composition expressed as 

proportions so that 1
1

=∑
=

Ln

L
Lπ .  ηeN =1  is total abundance at the beginning of the first 

modeled year and η is an estimable parameter.  It is not necessary to estimate recruitment 
in the first year because recruitment is implicit in the product of N1 and πL.  The current 
implementation of CASA takes the initial population length composition as data supplied 
by the user, typically based on survey size composition data and a preliminary estimate of 
survey size-selectivity. 
 Abundance at length in years after the first year is calculated: 
  ( ) 101 ++ += yyyy RSNPN
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where yN


is a vector (length nL) of abundance in each length bin during year y, P0 is the 

matrix (nL x nL) of annual growth probabilities P0(b,a), yS


is a vector of length- specific 

survival fractions for year y,   is the operator for an element-wise product , and yR


 is a 
vector holding length-specific abundance of new recruits at the beginning of year y.   

Survival fractions are: 
  ( )LyLyLyLy IFMZ

Ly eeS ,,,,
,

++−− ==   
where Zy,L is the total instantaneous mortality rate and My,L is the instantaneous rate for 
natural mortality (see below).  Length-specific fishing mortality rates are Fy,L= Fy sy,L 
where sy,L is the size-specific selectivity4 for fishing in year y (scaled to a maximum of 
one at fully recruited size groups), Fy is the fishing mortality rate on fully selected 
individuals.   Fully recruited fishing mortality rates are yeFy

δφ+= where φ is an estimable 
parameter for the log of the geometric mean of fishing mortality in all years, and δy is an 
estimable “dev” parameter.5  The instantaneous rate for “incidental” mortality (Iy,L) 
accounts for mortality due to contact with the fishing gear that does not result in any 
catch on deck (see below).6  The degree of variability in dev parameters for fishing 
mortality, natural mortality and for other variables can be controlled by specifying 
variances or likelihood weights ≠ 1, as described below.  

Natural mortality rates are calculated (Hart and Chang, 2022): 
𝑀𝑀𝐿𝐿,𝑦𝑦 = 𝛼𝛼𝐿𝐿𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗 + (1−𝛼𝛼𝐿𝐿)𝑀𝑀𝑎𝑎𝑎𝑎 

where juvenile and adult natural mortality 𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗 and 𝑀𝑀𝑎𝑎𝑎𝑎 can be decomposed into their 
mean values (𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗 and 𝑀𝑀𝑎𝑎𝑎𝑎) and annual deviations from the mean (𝜃𝜃𝑦𝑦 and 𝜔𝜔𝑦𝑦): 𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗 =
𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗 + 𝜃𝜃𝑦𝑦   and 𝑀𝑀𝑎𝑎𝑎𝑎 = 𝑀𝑀𝑎𝑎𝑎𝑎 +𝜔𝜔𝑦𝑦 .  𝛼𝛼𝐿𝐿 is an estimable descending logistic function based 
on size. The 𝛼𝛼𝐿𝐿  is calculated as 

                                                 
4  In this context, “selectivity” describes the combined effects of all factors that affect length composition of 
catch or landings.  These factors include gear selectivity, spatial overlap of the fishery and population, size-
specific targeting, size-specific discard, etc.   
5 Dev parameters are a special data type for estimable parameters in AD-Model Builder.  Each set of dev 
parameters (e.g. for all recruitments in the model) is constrained to sum to zero.  Because of the constraint, 
the sums φ +δy involving ny+1 terms amount to only ny parameters. 
6 .  See the section on per recruit modeling below for formulas used to relate catch, landings and indicental 
mortality. 
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where b is the slope parameter and a is the L50 parameter. The 𝛼𝛼𝐿𝐿  is used to partition 
juveniles and adults, thus determining whether how the natural mortality changes with  
size.  Even though the logistic partition is descending, it is not necessary that the juvenile 
natural mortalities will be larger than the adult natural mortalities.  If 𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗 is smaller than 
𝑀𝑀𝑎𝑎𝑎𝑎 , the juvenile natural mortalities will be smaller than the adult natural mortalities, 
and vice versa. If 𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗 equals to 𝑀𝑀𝑎𝑎𝑎𝑎, the natural mortality will be the same for all sizes. 
If the logistic partition is flat at zero, only one mean natural mortality parameter during 
all years for all sizes, along with one year-specific dev parameter, can be estimated.  

Incidental mortality iuFI LyLy =,  is the product of fully recruited fishing mortality 
(Fy, a proxy for effective fishing effort, although nominal fishing effort might be a better 
predictor of incidental mortality), relative incidental mortality at length (uL) and a scaling 
parameter i, both of which are supplied by the user and not estimable in the model.  
Incidental mortality at length is supplied by the user as a vector ( u ) containing a value 
for each length group in the model.  The model rescales the relative mortality vector so 
that the mean of the series is one.   

Given abundance in each length group, natural mortality, and fishing mortality, 
predicted fishery catch-at-length in numbers is: 
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Total catch number during each year is ∑
=

=
Ln

j
Lyy CC

1
, .   Catch data (in weight, numbers or 

as length composition data) are understood to include landings (Ly) and discards (dy) but 
to exclude losses to incidental mortality (i.e. Cy=Ly+dy).  
 Discard data are supplied by the user in the form of discarded biomass in each 
year or a discard rate for each year (or a combination of biomass levels and rates).  In the 
current model, discards have the same selectivity as landed catch and size composition 
data for discards are not included in the input file.7  It is important to remember that 
discard rates in CASA are defined the ratio of discards to landings (d/L).  The user may 
also specify a mortal discard fraction between zero and one if some discards survive.  If 
the discard fraction is less than one, then the discarded biomass and discard rates in the 
model are reduced correspondingly.  See the section on per recruit modeling below for 
formulas used to relate catch, landings and incidental mortality. 

Recruitment (the sum of new recruits in all length bins) at the beginning of each 
year after the first is calculated: 
  yeRy γρ+=  
where ρ is an estimable parameter that measures the geometric mean recruitment and the 
γy are estimable dev parameters that measure inter-annual variability in recruitment.  As 
with natural mortality devs, the user specified variance or likelihood weight ≠ 1 can be 
used to help estimate recruitment deviations (see below). 
                                                 
7 The model will be modified in future to model discards and landing separately, and to use size 
composition data for discards. 
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Proportions of recruits in each length group are calculated based on a beta 
distribution B(w,r) over the first nr length bins that is constrained to be concave down.8  
Proportions of new recruits in each size group are the same from year to year.  Beta 
distribution coefficients must be larger than one for the shape of the distribution to be 
unimodal.  Therefore, w=1+eω and r=1+eρ, where ω and ρ are estimable parameters.  It is 
presumably better to calculate the parameters in this manner than as bounded parameters 
because there is likely to be less distortion of the Hessian for w and r values close to one 
and parameter estimation is likely to be more efficient.   
 Surplus production during each year of the model can be computed approximately 
from biomass and catch estimates (Jacobson et al., 2002): 
  tttt CBBP +−= +1  
In future versions of the CASA model, surplus production will be more calculated more 
accurately by projecting the population at the beginning of the year forward one year 
assuming only natural mortality. 
 
Weight at length9 
 The assumed body weight for size bins except the last is calculated using user-
specified length-weight parameters and the middle of the size group.  Different length-
weight parameters are used for the population and for the commercial fishery.  Mean 
body weight in the last size bin is read from the input file and can vary from year to year.  
Typically, mean weight in the last size bin for the population would be computed based 
on survey length composition data for large individuals and the population length –
weight relationship.  Mean weight in the last size bin for the fishery would be computed 
in the same manner based on fishery size composition data.   

In principle, these calculations could be carried out in the model itself because all 
of the required information is available.  In practice, it seems better to do the calculations 
externally and supply them to the model as inputs because of decisions that typically have 
to be made about smoothing the estimates and years with missing data. 
 
Population summary variables 

Total abundance at the beginning of the year is the sum of abundance at length 
Ny,L at the beginning of the year.  Average annual abundance for a particular length group 
is: 
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LyLy Z
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The current implementation of the assessment model assumes different weight-at-length 
relationships for the stock and the fishery.  Average stock biomass is computed using the 
population weight at length information.  

                                                 
8 Standard beta distributions used to describe recruit size distributions and in priors are often constrained to 
be unimodal in the CASA model.  Beta distributions B(w,r) with mean rww +=µ and variance 

( ) ( )[ ]122 +++= rwrwwrσ are unimodal when w > 1 and r >1.  See 
http://en.wikipedia.org/wiki/Beta_distribution for more information. 
9 Model input data include a scalar that is used to convert the units for length-weight parameters (e.g. 
grams) to the units of the biomass estimates and landings data (e.g. mt). 

http://en.wikipedia.org/wiki/Beta_distribution
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Total stock biomass is: 
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where Lw is weight at length for the population on January 1.  Total catch weight is: 
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where Lw′ is weight at length in the fishery.   
Fy estimates for two years are comparable only when the fishery selectivity in the 

model was the same in both years.  A simpler exploitation index is calculated for use 
when fishery selectivity changes over time: 
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where x is a user-specified length bin (usually at or below the first bin that is fully 
selected during all fishery selectivity periods).  Uy exploitation indices from years with 
different selectivity patterns may be relatively comparable if x is chosen carefully. 
 Spawner abundance in each year is (Ty) is computed: 

L

n

L

Z
Lyy geNT

L
y∑

=

−=
1

,
τ  

Where 0 ≤ τ ≤ 1 is the fraction of the year elapsed before spawning occurs (supplied by 
the user).  Maturity at length (gL) is from an ascending logistic curve: 

bLaL e
g −+

=
1

1  

with parameters a and b supplied by the user.  Spawner biomass is computed using the 
population length-weight vaoues. 
 Egg production (Sy) in each year is computed: 
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where: 
  v

L cLx =  
Where the fecundity parameters (c and v) for fecundity are supplied by the user.  
Fecundity parameters per se include no adjustments for maturity or survival.  They 
should represent reproductive output for a spawner of given size. 
 
Fishery and survey selectivity  

The current implementation of CASA includes six options for calculating fishery 
and survey selectivity patterns.  Fishery selectivity may differ among “fishery periods” 
defined by the user. Selectivity patterns that depend on length are calculated using 
lengths at the mid-point of each bin (  ).  After initial calculations (described below), 
selectivity curves are rescaled to a maximum value of one. 

Option 1 is a flat with sL=1 for all length bins.  Option 2 is an ascending logistic 
curve: 
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Option 3 is an ascending logistic curve with a minimum asymptotic minimum size for 
small size bins on the left. 
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Option 4 is a descending logistic curve: 
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Option 5 is a descending logistic curve with a minimum asymptotic minimum size for 
large size bins on the right: 
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Option 6 is a double logistic curve used to represent “domed-shape” selectivity patterns 
with highest selectivity on intermediate size groups: 
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The coefficients for selectivity curves AY, BY, DY and GY carry subscripts for time because 
they may vary between fishery selectivity periods defined by the user.  All options are 
parameterized so that the coefficients AY, BY, DY and GY are positive.  Under options 3 
and 5, Dy is a proportion that must lie between 0 and 1.   

Depending on the option, estimable selectivity parameters may include α, β , δ 
and γ.  For options 2, 4 and 6, YeAY

α= , YeBY
β= , YeDY

δ= and YeGY
γ= .  Options 3 and 5 

use the same conventions for AY and BY, however, the coefficient DY is a proportion 
estimated as a logit-transformed parameter (i.e. δY=ln[DY /(1-Dy)]) so that: 

 
Y

Y

e
eDY δ

δ

+
=
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The user can choose, independently of all other parameters, to either estimate each 
fishery selectivity parameter or to keep it at its initial value.  Under Option 2, for 
example, the user can estimate the intercept αY, while keep the slope βY at its initial value. 
 
Per recruit recruit modeling 

The per recruit model in CASA uses the same population model as in other model 
calculations under conditions identical to the last year in the model.  It is a standard 
length-based approach except that discard and incidental mortality are accommodated in 
all calculations.  In per recruit calculations, fishing mortality rates and associated yield 
estimates are understood to include landings and discard mortality, but to exclude 
incidental mortality.  Thus, landings per recruit L are: 

( )∆+=
1

CL  
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where C is total catch (yield) per recruit and ∆ is the ratio of discards D to landings in the 
last year of the model.  Discards per recruit are calculated: 

LD ∆=  
Losses due to incidental mortality (G) are calculated: 

( )
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where uFI = is the incidental mortality rate, u is a user-specified multiplier (see above) 
and B is stock biomass per recruit.  Note that C=FK so that K=C/F.  Then, 

  
uCG

F
FuCG

=

=  

The model will estimate a wide variety (F%SBR, Fmax and F0.1) of per recruit model 
reference points as parameters.  For example, 

jeF SBR
θ=%  

where F%SBR is the fishing mortality reference point that provides a user specified 
percentage of maximum SBR.  θj is the model parameter for the jth reference point. 
 A complete per recruit output table is generated in all model runs that can be used 
for evaluating the shape of YPR and SBR curves, including the existence of particular 
reference points. 
 Per recruit reference points are time consuming to estimate and it is usually better 
to estimate them after other more important population dynamics parameters are 
estimated.  Phase of estimation can be controlled individually for %SBR, FMAX and F0.1 
so that per recruit calculations can be delayed as long as possible.  If the phase is set to 
zero or a negative integer, then the reference point will not be estimated.  As described 
below, estimation of Fmax always entails an additional phase of estimation.  For example, 
if the phase specified for Fmax is 2, then the parameter will be estimated initially in phase 
2 and finalized the last phase (phase >= 3).  This is done so that the estimate from phase 2 
can be used as an initial value in a slightly different goodness of fit calculation during the 
latter phase.  
 Per recruit reference points should have no effect on other model estimates.  
Residuals (calculated – target) for %SBR, F0.1 and Fmax reference points should always be 
very close to zero.  Problems may arise, however, if reference points (particularly Fmax) 
fall on the upper bound for fishing mortality.  In such cases, the model will warn the user 
and advise that the offending reference points should not be estimated.  It is good 
practice to run CASA with reference point calculations turned on and then off to see if 
biomass and fishing mortality estimates change. 
    The user specifies the number of estimates required and the target %SBR level for 
each.  For example, the target levels for four %SBR reference points might be 0.2, 0.3, 
0.4 and 0.5 to estimate F20%, F30%, F40% and F50%.  The user has the option of estimating 
Fmax and/or F0.1 as model parameters also but it is not necessary to supply target values. 
 
Tuning and goodness of fit 
 



9 
 

 There are two steps in calculating the negative log likelihood (NLL) used to 
measure how well the model fits each type of data.  The first step is to calculate the 
predicted values for data.  The second step is to calculate the NLL of the data given the 
predicted value.  The overall goodness of fit measure for the model is the weighted sum 
of NLL values for each type of data and each constraint: 
  ∑=Λ jj Lλ  
where λj is a weighting factor for data set j (usually λj=1, see below), and Lj is the NLL 
for the data set.  The NLL for a particular data is itself is usually a weighted sum: 

  ∑
=

=
jn

i
ijijj LL

1
,,ψ  

where nj is the number of observations, ψ j,i is an observation-specific weight (usually ψ j,i 
=1, see below), and Lj,i is the NLL for a single observation. 

Maximum likelihood approaches reduce the need to specify ad-hoc weighting 
factors (λ and φ) for data sets or single observations, because weights can often be taken 
from the data (e.g. using CVs routinely calculated for bottom trawl survey abundance 
indices) or estimated internally along with other parameters.  In addition, robust 
maximum likelihood approaches (see below) may be preferable to simply down-
weighting an observation or data set.  However, despite subjectivity and theoretical 
arguments against use of ad-hoc weights, it is often useful in practical work to 
manipulate weighting factors, if only for sensitivity analysis or to turn an observation off 
entirely.  Observation specific weighting factors are available for most types of data in 
the CASA model.    
 
Missing data 
 Availability of data is an important consideration in deciding how to structure a 
stock assessment model.  The possibility of obtaining reliable estimates will depend on 
the availability of sufficient data.  However, NLL calculations and the general structure 
of the CASA model are such that missing data can usually be accommodated 
automatically.  With the exception of catch data (which must be supplied for each year, 
even if catch was zero), the model calculates that NLL for each datum that is available.  
No NLL calculations are made for data that are not available and missing data do not 
generally hinder model calculations. 
 
Likelihood kernels 

Log likelihood calculations in the current implementation of the CASA model use 
log likelihood “kernels” or “concentrated likelihoods” that omit constants.  The constants 
can be omitted because they do not affect slope of the NLL surface, final point estimates 
for parameters or asymptotic variance estimates.    

For data with normally distributed measurement errors, the complete NLL for one 
observation is: 

  ( ) ( )
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The constant ( )π2ln  can always be omitted.  If the standard deviation is known or 
assumed known, then ln(σ) can be omitted as well because it is a constant that does not 
affect derivatives.  In such cases, the concentrated NLL is:   

  
2

5.0 
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If there are N observations with possible different variances (known or assumed known) 
and possibly different expected values: 
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If the standard deviation for a normally distributed quantity is not known and is 

estimated (implicitly or explicitly) by the model, then one of two equivalent calculations 
is used.  Both approaches assume that all observations have the same variance and 
standard deviation.  The first approach is used when all observations have the same 
weight in the NLL: 
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The second approach is equivalent but used when the weights for each observation (wi) 
may differ:  
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In the latter case, the maximum likelihood estimator: 
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(where x̂ is the average or predicted value from the model) is used explicitly for σ .  The 
maximum likelihood estimator is biased by N/(N-df) where df is degrees of freedom for 
the model.  The bias may be significant for small sample sizes, which are common in 
stock assessment modeling, but df is usually unknown. 
 If data x have lognormal measurement errors, then ln(x) is normal and L is 
calculated as above.  In some cases it is necessary to correct for bias in converting 

arithmetic scale means to log scale means (and vice-versa) because 2
2σχ += ex  where 

χ=ln(x).  It is often convenient to convert arithmetic scale CVs for lognormal variables to 
log scale standard deviations using ( )21ln CV+=σ .  
 For data with multinomial measurement errors, the likelihood kernel is: 

  ( )∑
=

−=
n

i
ii KpnL

1
ln θ  

where n is the known or assumed number of observations (the “effective” sample size), pi 
is the proportion of observations in bin i, and θi is the model’s estimate of the probability 
of an observation in the bin.  For surveys, θi is adjusted for mortality up to the date of the 
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survey and for growth up to the mid-point of the month in which the survey occurs.  For 
fisheries, θi accommodates all of the mortality during the current year and is adjusted for 
growth during January 1 to mid-July.   The constant K is used for convenience to make L 
easier to interpret.  It measures the lowest value of L that could be achieved if the data fit 
matched the model’s expectations exactly: 

  ( )∑
=

=
n

i
ii ppnK

1
ln  

 For data x that have measurement errors with expected values of zero from a 
gamma distribution: 

  ( ) ( )βββγ lnln1 −−




−= xxL      

where β>0 and γ>0 are gamma distribution parameters in the model.  For data that lie 
between zero and one with measurement errors from a beta distribution: 
  ( ) ( ) ( ) ( )xqxpL −−+−= 1ln1ln1  
 where p>0 and q>0 are parameters in the model.  

In CASA model calculations, distributions are usually described in terms of the 
mean and CV.  Normal, gamma and beta distribution parameters can be calculated mean 
and CV by the method of moments.10  Means, CV’s and distributional parameters may, 
depending on the situation, be estimated in the model or specified by the user.   

The NLL for a datum x from gamma distribution is: 

( ) ( ) ( )[ ] ( )θ
θ

lnlnln*1 kkxxkL +Γ++−=  

where k is the shape parameter and θ is the scale parameter.  The last two terms on the 
right are constants and can be omitted if k and θ are not estimated.  Under these 
circumstances,   

( ) ( )
θ
xxkL +−= ln*1  

 
Robust methods 
 Goodness of fit for survey data may be calculated using a “robust” maximum 
likelihood method instead of the standard method that assumes lognormal measurement 
errors.  The robust method may be useful when survey data are noisy or include outliers.   

Robust likelihood calculations in CASA assume that measurement errors are from 
a Student’s t distribution with user-specified degrees of freedom df.  Degrees of freedom 
are specified independently for each observation so that robust calculations can be carried 
out for as many (or as few) cases as required.  The t distribution is similar to the normal 
                                                 
10 Parameters for standard beta distributions B(w,r) with mean rww +=µ and variance 

( ) ( )[ ]122 +++= rwrwwrσ  are calculated from user-specified means and variances by the method 

of moments.  In particular, ( )[ ]11 2 −−= σµµµw  and ( ) ( )[ ]111 2 −−−= σµµµr .  Not all 
combinations of µ and σ2 are feasible.  In general, a beta distribution exists for combinations of µ and σ2 if 
0 < µ < 1 and 0 < σ2 < µ(1-µ).  Thus, for a user-specified mean µ between zero and one, the largest feasible 
variance is σ2 < µ(1-µ).  These conditions are used in the model to check user-specified values for µ and σ2. 
See http://en.wikipedia.org/wiki/Beta_distribution for more information. 
 

http://en.wikipedia.org/wiki/Beta_distribution
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distribution for df ≥30.  As df is reduced, the tails of the t distribution become fatter so 
that outliers have higher probability and less effect on model estimates.  If df =0, then 
measurement errors are assumed in the model to be normally distributed.   

The first step in robust NLL calculations is to standardize the measurement error 
residual ( ) σxxt −=  based on the mean and standard deviation.   Then: 

 
( )
2

ln
2

1
11ln

2
ff

f

dd
d
tL −







 −
−










+=  

 
Catch weight data 
 Catch data (landings plus discards) are assumed to have normally distributed 
measurement errors with a user specified CV.  The standard deviation for catch weight in 
a particular year is yY Ĉκσ = where “̂ ” indicates that the variable is a model estimate and 
errors in catch are assumed to be normally distributed.  The standardized residual used in 
computing NLL for a single catch observation and in making residual plots is 

( ) YYYY CCr σˆ−= . 
 
Specification of landings, discards, catch  
 Landings, discard and catch data are in units of weight and are for a single or 
“composite” fishery in the current version of the CASA model.  The estimated fishery 
selectivity is assumed to apply to the discards so that, in effect, the length composition of 
catch, landings and discards are the same.   

Discards are from external estimates (dt) supplied by the user. If dt ≥  0, then the 
data are used as the ratio of discard to landed catch so that: 

ttt LD ∆=  
where t∆ =Dt/Lt is the ratio of discard and landings (a.k.a. d/K ratios) for each year.  If dt 
< 0 then the data are treated as discard in units of weight: 

( ).tt dabsD =  
In either case, total catch is the sum of discards and landed catch (Ct = Lt + Dt).  It is 
possible to use discards in weight dt < 0 for some years and discard as proportions dt > 0 
for other years in the same model run.   

If catches are estimated (see below) so that the estimated catch tĈ  does not 
necessarily equal observed landings plus discard, then estimated landings are computed: 

 
t

t
t

CL
∆+

=
1

ˆˆ  

Estimated discards are:  
.ˆˆ

ttt LD ∆=  

Note that ttt DLC ˆˆˆ += as would be expected. 
 
Fishery length composition data 
 Data describing numbers or relative numbers of individuals at length in catch data 
(fishery catch-at-length) are modeled as multinomial proportions cy,L: 
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∑
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,  

The NLL for the observed proportions in each year is computed based on the kernel for 
the multinomial distribution, the model’s estimate of proportional catch-at-length ( )Yĉ  
and an estimate of effective sample size Y

C N  supplied by the user.  Care is required in 
specifying effective sample sizes, because catch-at-length data typically carry 
substantially less information than would be expected based on the number of individuals 
measured.  Typical conventions make Y

cN ≤ 200 (Fournier and Archibald, 1982) or set 

Y
C N equal to the number of trips or tows sampled (Pennington et al., 2002).  Effective 
sample sizes are sometimes chosen based on goodness of fits in preliminary model runs 
(Methot, 2000; Butler et al., 2003).   
 Standardized residuals are not used in computing NLL fishery length composition 
data.  However, approximate standardized residuals ( ) LyLyLyy ccr ,,, ˆ σ−= with standard 

deviations ( ) y
c

LyLyLy Ncc ,,, ˆ1ˆ −=σ based on the theoretical variance for proportions are 
computed for use in making residual plots. 
 
Survey index data 
 In CASA model calculations, “survey indices” are data from any source that 
reflect relative proportional changes in an underlying population state variable.  In the 
current version, surveys may measure stock abundance at a particular point in time (e.g. 
when a survey was carried out), stock biomass at a particular point in time, or numbers of 
animals that dies of natural mortality during a user-specified period.  For example, the 
first option is useful for bottom trawl surveys that record numbers of individuals, the 
second option is useful for bottom trawl surveys that record total weight, and the third 
option is useful for survey data that track trends in numbers of animals that died due to 
natural mortality (e.g. survey data for sea scallop “clappers”).  Survey data that measure 
trends in numbers dead due to natural mortality can be useful in modeling time trends in 
natural mortality.  In principle, the model will estimate model natural mortality and other 
parameters so that predicted numbers dead and the index data match in either relative or 
absolute terms.  

In the current implementation of the CASA model, survey indices are assumed to 
be linear indices of abundance or biomass so that changes in the index (apart from 
measurement error) are assumed due to proportional changes in the population.  
Nonlinear commercial catch rate data are handled separately (see below).  Survey index 
and fishery length composition data are handled separately from trend data (see below).  
Survey data may or may not have corresponding length composition information. 

In general, survey index data give one number that summarizes some aspect of the 
population over a wide range of length bins.  Selectivity parameters measure the relative 
contribution of each length bin to the index.  Options and procedures for estimating 
survey selectivity patterns are the same as for fishery selectivity patterns, but survey 
selectivity patterns are not allowed to change over time. 
 NLL calculations for survey indices use predicted values calculated: 
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  ykkyk AqI ,,
ˆ =  

where qk is a scaling factor for survey index k, and Ak,y is stock available to the survey.  
The scaling factor is computed using the maximum likelihood estimator: 
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where Nv and 𝜎𝜎𝑘𝑘,𝑗𝑗

2  is the log scale variance corresponding to the assumed CV for the 
survey observation.11    

Available stock for surveys measuring trends in abundance or biomass is 
calculated: 

  ∑
=

−=
L

ykLy
n

L

Z
LyLkyk eNsA

1
,,,

,, τ
 

 
where sk,L is size-specific selectivity of the survey, τk,y=Jk,y/365, Jk,y is the Julian date of 
the survey in year y, and ykyZe ,τ− is a correction for mortality prior to the survey.  
Available biomass is calculated in the same way except that body weights wL are 
included in the product on the right hand side.  
 Available stock for indices that track numbers dead by natural mortality is: 

  ∑
=

=
Ln

L
LyLyLkyk NMsA

1
,,,,

~  

where LyN , is average abundance during the user-specified period of availability and 

LyM ,
~  is the instantaneous rate of natural mortality for the period of availability.  Average 

abundance during the period of availability is: 

   
( )

Ly

Z
Ly

Ly Z
eN

N
Ly

,

~

,
, ~

1~ ,−−
=  

where ∆−= Z
LyLy eNN ,,

~ is abundance at elapsed time of year ∆=τk,y-νk, vk=jk /365, and jk is 
the user-specified duration in days for the period of availability.  The instantaneous rates 
for total ( )kykLyLy ZZ ντ −= ,,,

~  and natural ( )kykLyLy MM ντ −= ,,,
~  mortality are also 

adjusted to correspond to the period of availability.  In using this approach, the user 
should be aware that the length based selectivity estimated by the model for the dead 
animal survey (sk,L) is conditional on the assumed pattern of length-specific natural 
mortality ( u ) which was specified as data in the input file. 

                                                 
11 Scaling factors in previous versions were calculated seqs

ϖ= where ϖs is an estimable and survey-
specific parameter.  However, prior distributions were shown to have a strong effect on the parameters such 
that the relationship N=qA did not hold.  The approach in the current model avoids this problem. 
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NLL calculations for survey index data assume that log scale measurement errors 
are either normally distributed (default approach) or from a t distribution (robust 
estimation approach).  In either case, log scale measurement errors are assumed to have 
mean zero and log scale standard errors either estimated internally by the model or 
calculated from the arithmetic CVs supplied with the survey data.   

The standardized residual used in computing NLL for one survey index 
observation is ( ) ykykykyk IIr ,,,, /ˆln σ=  where Ik,y is the observation.  The standard 
deviations yk ,σ will vary among surveys and years if CVs are used to specify the variance 
of measurement errors.  Otherwise a single standard deviation is estimated internally for 
the survey as a whole.    
 
Survey length composition data 

Length bins for fishery and survey length composition data are flexible and the 
flexibility affects goodness of fit calculations in ways that may be important to consider 
in some applications.  The user specifies the starting size (bottom of first bin) and number 
of bins used for each type of fishery and survey length composition.  The input data for 
each length composition record identifies the first/last length bins to be used and whether 
they are plus groups that should include all smaller/larger length groups in the data and 
population model when calculating goodness of fit.  Goodness of fit calculations are 
carried out over the range of lengths specified by the user.  Thus length data in the input 
file may contain large or small size bins that are ignored in goodness of fit calculations.    
As described above, the starting size and bin size for the population model are specified 
separately. In the ideal and simplest case, the minimum size and same length bins are 
used for the population and for all length data.  However, as described below, length 
specifications in data and the population model may differ.   

For example, the implicit definitions of plus groups in the model and data may 
differ.  If the first bin used for length data is a plus group, then the first bin will contain 
the sum of length data from the corresponding and smaller bins of the original length 
composition record.  However, the first bin in the population model is never a plus group.  
Thus, predicted values for a plus group will contain the sum of the corresponding and 
smaller bins in the population.  The observed and predicted values will not be perfectly 
comparable if the starting sizes for the data and population model differ.  Similarly, if the 
last bin in the length data is a plus group, it will contain original length composition data 
for the corresponding and all larger bins.  Predicted values for a plus group in the 
population will be the sum for the corresponding bin and all larger size groups in the 
population, implicitly including sizes > L∞..  The two definitions of the plus group will 
differ and goodness of fit calculation may be impaired if the original length composition 
data does not include all of the large individuals in samples. 

In the current version of the CASA model, the size of length composition bins 
must be ≥ Lbin in the population model (this constraint will be removed in later versions).  
Ideally, the size of data length bins is the same or a multiple of the size of length bins in 
the population.  However, this is not required and the model will prorate the predicted 
population composition for each bin into adjacent data bins when calculating goodness of 
fit.  With a 30-34 mm population bin and 22-31and 32-41 mm population bins, for 
example, the predicted proportion in the population bin would be prorated so that 2/5 was 
assigned to the first data bin and 3/5 was assigned to the second data bin.  This proration 
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approach is problematic when it is used to prorate the plus group in the population model 
into two data bins because it assumes that abundance is uniform over lengths within the 
population group.  The distribution of lengths in a real population might be far from 
uniform between the assumed upper and lower bounds of the plus group. 

The first bin in each length composition data record must be ≥ Lmin which is the 
smallest size group in the population model.  If the last data bin is a plus group, then the 
lower bound of the last data bin must be ≤ the upper bound of the last population bin.  
Otherwise, if the last data bin is not a plus group, the upper bound of the last data bin 
must be ≤ the upper bound of the population bin. 

NLL calculations for survey length composition data are similar to calculations 
for fishery length composition data.  Surveys index data may measure trends in stock 
abundance or biomass but survey length composition data are always for numbers (not 
weight) of individuals in each length group.  Survey length composition data represent a 
sample from the true stock which is modified by survey selectivity, sampling errors and, 
if applicable, errors in recording length data.  For example, with errors in length 
measurements, individuals belonging to length bin j, are mistakenly assigned to adjacent 
length bins j-2, j-1, j+1 or j+2 with some specified probability.  Well-tested methods for 
dealing with errors in length data can be applied if some information about the 
distribution of the errors is available (e.g. Methot 2000).   

Prior to any other calculations, observed survey length composition data are 
converted to multinomial proportions: 
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where nk,y,j is an original datum and ik,y,L is the corresponding proportion.  As described 
above, the user specifies the first first

ykL , and last last
ykL , length groups to be used in calculating 

goodness of fit for each length composition and specifies whether the largest and smallest 
groups should be treated as “plus” groups that contain all smaller or larger individuals. 

Using notation for goodness of fit survey index data (see above), predicted length 
compositions for surveys that track abundance or biomass are calculated: 
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Predicted length compositions for surveys that track numbers of individuals killed by 
natural mortality are calculated: 
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Considering the possibility of structured measurement errors, the expected length 
composition ykA ,'


for survey catches is: 

  kykyk EAA ,,'


=  
where kE is an error matrix that simulates errors in collecting length data by mapping 
true length bins in the model to observed length bins in the data.   

The error matrix kE  has nL rows (one for each true length bin) and nL columns 
(one for each possible observed length bin).  For example, row k and column j of the 
error matrix gives the conditional probability P(k|j) of being assigned to bin k, given that 
an individual actually belongs to bin j.  More generally, column j gives the probabilities 
that an individual actually belonging to length bin j will be recorded as being in length 
bins j-2, j-1, j, j+1, j+2 and so on.  The columns of kE add to one to account for all 
possible outcomes in assigning individuals to observed length bins.  kE is the identity 
matrix if there are no structured measurement errors.   
 In CASA, the probabilities in the error matrix are computed from a normal 
distribution with mean zero and keCV π= , where πk is an estimable parameter.  The 
normal distribution is truncated to cover a user-specified number of observed bins (e.g. 3 
bins on either side of the true length bin).  
 The NLL for observed proportions at length in each survey and year is computed 
with the kernel for a multinomial distribution, the model’s estimate of proportional 
survey catch-at-length ( )Lyki ,,

ˆ  and THE effective sample size Y
I N  supplied by the user.  

Standardized residuals for residual plots are computed as for fishery length composition 
data. 
 
Effective sample size for length composition data 
 Effective sample sizes that are specified by the user are used in goodness of fit 
calculations for survey and fishery length composition data.  A post-hoc estimate of 
effective sample size can be calculated based on goodness of fit in a model run (Methot 
1989).  Consider the variance of residuals for a single set of length composition data with 
N bins used in calculations.  The variance of the sum based on the multinomial 
distribution is: 

  
( )

∑
=








 −
=

N

j

jj pp

1

2 ˆ1ˆ
ϕ

σ  

where ϕ is the effective sample size for the multinomial and jp is the predicted 
proportion in the jth bin from the model run.   Solve for ϕ to get: 
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The variance of the sum of residuals can also be calculated: 
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This formula is approximate because it ignores the traditional correction for bias.  
Substitute the third expression into the second to get: 
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which can be calculated based on model outputs.  The assumed and effective sample 
sizes will be similar in a reasonable model when the assumed sample sizes are 
approximately correct.  Effective sample size calculations can be used iteratively to 
manually adjust input vales to reasonable levels (Methot 1989). 
 
Variance constraints on dev parameters 
 Variability in dev parameters (e.g. for natural mortality, recruitment or fishing 
mortality) can be limited using variance constraints that assume the deviations are either 
independent or that they are autocorrelated and follow a random walk.  When a variance 
constraint for independent deviations is activated, the model calculates the NLL for each 

log scale residual 
γσ

γ y , where γy is a dev parameter and σ is a log-scale standard 

deviation.  If the user supplies a positive value for the arithmetic scale CV, then the NLL 
is calculated assuming the variance is known.  Otherwise, the user-supplied CV is 
ignored and the NLL is calculated with the standard deviation estimated internally.  
Calculations for autocorrelated deviations are the same except that the residuals are 
( )

γσ
γγ 1−− yy and the number of residuals is one less than the number of dev parameters. 

 
 
LPUE data 
 Commercial landings per unit of fishing effort (LPUE) data are modeled in the 
current implementation of the CASA model as a linear function of average biomass 
available to the fishery, and as a nonlinear function of average available abundance.  The 
nonlinear relationship with abundance is meant to reflect limitations in “shucking” 
capacity for sea scallops.12  Briefly, tows with large numbers of scallops require more 
time to sort and shuck and therefore reduce LPUE from fishing trips when abundance is 
high.  The effect is exaggerated when the catch is composed of relatively small 
individuals.  In other words, at any given level of stock biomass, LPUE is reduced as the 

                                                 
12 D. Hart, National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, MA, pers. 
comm. 
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number of individuals in the catch increases or, equivalently, as the mean size of 
individuals in the catch is reduced.   

Average available abundance in LPUE calculations is: 
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and average available biomass is: 
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where the weights at length f
Lw are for the fishery rather than the population.  Predicted 

values for LPUE data are calculated: 
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Measurement errors in LPUE data are assumed normally distributed with standard 
deviations yyy LCV


=σ .  Standardized residuals are ( ) yyyy LLr σˆ−= . 

 
Per recruit (SBR and YPR) reference points13 
 The user specifies a target %SBR value for each reference point that is estimated.  
Goodness of fit is calculated as the sum of squared differences between the target %SBR 
and %SBR calculated based on the reference point parameter.  Except in pathological 
situations, it is always possible to estimate %SBR reference point parameters so that the 
target and calculated %SBR levels match exactly.  Reference point parameters should 
have no effect on other model estimates and the residual (calculated – target %SBR) 
should always be very close to zero. 
 Goodness of fit for F0.1 estimates is calculated in a manner similar to %SBR 
reference points.  Goodness of fit is calculated as the squared difference between the 
slope of the yield curve at the estimate and one-tenth of the slope at the origin.  Slopes 
are computed numerically using central differences if possible or one-sided (right hand) 
differences if necessary. 
 Fmax is estimated differently in preliminary and final phases.  In preliminary 
phases, goodness of fit for Fmax is calculated as (1/Y)2, where Y is yield per recruit at the 
current estimate of Fmax.  In other words, yield per recruit is maximized by finding the 
parameter estimate that minimizes it’s inverse.  This preliminary approach is very robust 
and will find Fmax if it exists.  However, it involves a non-zero residual (1/Y) that 
interferes with calculation of variances and might affect other model estimates.  In final 
phases, goodness of fit for Fmax is calculated as (d2) where d is the slope of the yield per 
recruit curve at Fmax.  The two approaches give the same estimates of FMAX but the 
goodness of fit approach used in the final phases has a residual of zero (so that other 
model estimates are not affected) and gives more reasonable variance estimates.  The 
latter goodness of fit calculation is not used during initial phases because the estimates of 
FMAX tend to “drift down” the right hand side of the yield curve in the direction of 
                                                 
13 This approach is not currently estimated because of performance problems.  The user can, however, 
estimate per recruit reference point from a detailed table written in the main output file (nc.rep).  However, 
variances are not available in the table. 
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decreasing slope.  Thus, the goodness of fit calculation used in final phases works well 
only when the initial estimate of FMAX is very close to the best estimate. 
 Per recruit reference points should have little or no effect on other model 
estimates.  Problems may arise, however, if reference points (particularly Fmax) fall on the 
upper bound for fishing mortality.  In such cases, the model will warn the user and advise 
that the offending reference points should not be estimated.  It is good practice to run 
CASA with and without reference point calculations to ensure that reference points do 
not affect other model estimates including abundance, recruitments and fishing mortality 
rates. 
 
Growth data 
 Growth data in CASA consist of records giving initial length, length after one 
year of growth, and number of corresponding observations.  Growth data may be used to 
help estimate growth parameters that determine the growth matrix P .  The first step is to 
convert the data for each starting length to proportions: 
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where n(b,a) is the number of individuals starting at size that grew to size b after one 
year.  The NLL is computed assuming that observed proportions p(a|b) at each starting 
size are a sample from a multinomial distribution with probabilities given by the 
corresponding column in the models estimated growth matrix P .  The user must specify 
an effective sample size j

PN based, for example, on the number of observations in each 
bin or the number of individuals contributing data to each bin.  Observations outside bin 
ranges specified by the user are ignored.  Standardized residuals for plotting are 
computed based on the variance for proportions. 
 
Survey gear efficiency data 

Survey gear efficiency for towed trawls and dredges is the probability of capture 
for individuals anywhere in the water column or sediments along the path swept by the 
trawl.  Ideally, the area surveyed and the distribution of the stock coincides so that: 
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Where Ik,y is a survey observation in units equivalent to biomass (or numerical) density 
(e.g. kg per standard tow), Bk,y is the biomass (or abundance) available to the survey, A is 
the area of the stock, ak is the area swept during one tow, 0<ek≤  1 is efficiency of the 
survey gear, and uk is a constant that adjusts for different units.   
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Efficiency estimates from studies outside the CASA model may be used as prior 
information in CASA.  The user supplies the mean and CV for the prior estimate of 
efficiency, along with estimates of Ak, ak and uk.   At each iteration if the model, the gear 
efficiency implied by the current estimate of qk is computed.  The model then calculates 
the NLL of the implied efficiency estimate assuming it was sampled from a unimodal 
beta distribution with the user-specified mean and CV. 

If efficiency estimates are used as prior information (if the likelihood weight λ > 
0), then it is very important to make sure that units and values for the survey data (I), 
biomass or abundance (B), stock area (A), area per tow (a), and adjustments for units (u) 
are correct (see Example 1).  The units for biomass are generally the same as the units for 
catch data.  In some cases, incorrect specifications will lead to implied efficiency 
estimates that are ≤ 0 or ≥ 1 which have zero probability based on a standard beta 
distribution used in the prior.  The program will terminate if e ≤ 0.  If e ≥ 1 during an 
iteration, then e is set to a value slightly less than one and a penalty is added to the 
objective function.  In some cases, incorrect specifications will generate a cryptic error 
that may have a substantial impact on estimates. 

Implied efficiency estimates are useful as a model diagnostic even if very little 
prior information is available because some model fits may imply unrealistic levels of 
implied efficiency.  The trick is to down weight the prior information (e.g. λ=1e-6) so that 
the implied efficiency estimate has very little effect on model results as long as 0 < e < 1.  
Depending on the situation, model runs with e near a bound indicate that estimates may 
be implausible.  In addition, it may be useful to use a beta distribution for the prior that is 
nearly a uniform distribution by specifying a prior mean of 0.5 and variance slightly less 
than 1/12=0.083333.  
 Care should be taken in using prior information from field studies designed to 
estimate survey gear efficiency.  Field studies usually estimate efficiency with respect to 
individuals on the same ground (e.g. by sampling the same grounds exhaustively or with 
two types of gear).  It seems reasonable to use an independent efficiency estimate and the 
corresponding survey index to estimate abundance in the area surveyed.  However, stock 
assessment models are usually applied to the entire stock, which is probably distributed 
over a larger area than the area covered by the survey.  Thus the simple abundance 
calculation based on efficiency and the survey index will be biased low for the stock as a 
whole.  In effect, efficiency estimates from field studies tend to be biased high as 
estimates of efficiency relative to the entire stock. 
 
Maximum fishing mortality rate 

Stock assessment models occasionally estimate absurdly high fishing mortality 
rates because abundance estimates are too small.  The NLL component used to prevent 
this potential problem is: 
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where: 

  
otherwise

FtifFt
dt 0

Φ>Φ−
=  

and  
( )

otherwise
FtifFt

qt 0
/ln Φ>Φ

=  

with the user-specified threshold value Φ set larger than the largest value of Ft that might 
possibly be expected (e.g. Φ=3).  The weighting factor λ is normally set to a large value 
(e.g. 1000). 
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