2013 TRAC Status Reports

Eastern GB cod, EGB haddock, and GB yellowtail flounder

NEFMC
Hyannis, Massachusetts September 24, 2013

Loretta O'Brien
NEFSC

U.S.A. I CANADA Allocation Shares

Allocation Shares

Eastern GB Atlantic Cod Management Unit

Management Unit Statistical Areas

USA: SA 561,562 CA: SA 551,552

2012 Catch (mt)	US	Canada	Total
Landings	91	437	488
Discards	55	31	234
Total	146	468	614
Quota taken	42%	91%	

-2013 April Benchmark model meeting

- no consensus on final benchmark model
- agreed to use one model for catch advice
- "VPA M 0.8 model"; M=0.8 for ages 6+ from 1994 onward , otherwise $M=0.2$ for all ages and years

Assessment

- June 2013: Strong retrospective bias in SSB and F from the "M 0.8 " model
- Caused by the substantial reduction in the estimated size of the 2003 yc ;
- Sensitivity analyses that adjusted for the 2003 year class indicated similar catch advice as the VPA "M 0.8";
- VPA "M 0.8" model results used for catch advise; however, not adjusted for retrospective bias; only reliable for relative pop'n trends between 1994-2011,not magnitude

- 2013 Jan 1 3+ biomass increasing (growth 2010 yc)

Recruitment (bars)

Poor rct since 1990 yc; 2010 yc strongest since 2010 yc >2003 but estimate still uncertain

- Mean weight at age remains low

Fishing Mortality

$$
F_{\mathrm{ref}}=0.18
$$

- 2012 F= 0.07
- Change in perception $-1^{\text {st }}$ time below Fref
- Fref not consistent with M=0.8 model

Harvest Strategy : TMGC adopted a

 strategy to maintain a low to neutral risk of exceeding the fishing mortality limit reference, $\mathbf{F}_{\text {ref }}=\mathbf{0 . 1 8}$ (established in 2002 by the TMGC).When stock conditions are poor, fishing mortality rates should be further reduced to promote rebuilding.

Catch Projections

- At the 2013 cod benchmark meeting, it was agreed that the current $F_{\text {ref }}=0.18$ was inconsistent with the VPA "M 0.8 " model given that it was derived based on models with an $\mathrm{M}=0.2$
- TRAC recommended using a lower value of F for projections and catch advice; an arbitrary value of $F=0.11$ was used

Probability of exceeding target F in $\mathbf{2 0 1 4}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5}$	$\mathbf{0 . 7 5}$
"M 0.8"(F =0.11)	$1,075 \mathrm{mt}$	$1,225 \mathrm{mt}$	$1,425 \mathrm{mt}$

- A 50% probability of not exceeding $F=0.11$ implies a catch less than $1,225 \mathrm{mt}$

Neutral risk (50\%) that biomass will not increase by:	$\mathbf{0 \%}$	$\mathbf{1 0 \%}$
"M 0.8"	$2,075 \mathrm{mt}$	600 mt

- Achieving a 10\% increase in SSB between 2014 and 2015 implies catches less than 600 mt

Catch Projection Summary

Given the extremely low SSB, TRAC advises that management should try to realize the growth potential from the 2010 year class to rebuild the SSB. In order to not exceed $\mathrm{F}=0.11$, \& to achieve a 10\% increase in biomass, catches must not exceed 600 mt

Consequence Analysis: reflect uncertainties

Catch 2012 quota 2013 2012 biomass ($3+$) 2013 biomass ($3+$)		VPA 0.8	ASAP
		$\begin{array}{r} 613 \mathrm{mt} \\ 600 \mathrm{mt} \\ 7700 \mathrm{mt} \\ 11160 \mathrm{mt} \\ \hline \end{array}$	$\begin{array}{r} 613 \mathrm{mt} \\ 600 \mathrm{mt} \\ 2091 \mathrm{mt} \end{array}$
Projected Catch			
2028 mt	2014 F	0.18	0.75
(VPA F=0.18)	2015 Biomass	13314	3328
	\% inc B from 2014	0.4\%	-20.2\%
1225 mt	2014 F	0.11	0.40
$(\text { VPA F=0.11) }$	2015 Biomass	14018	4153
	\% inc B from 2014	6\%	-0.42\%
	2014 F	0.05	0.18
$\text { (ASAP } \mathrm{F}=0.18)$	2015 Biomass	14646	4794
	\% inc B from 2014	10.0\%	15.0\%
378 mt	2014 F	0.03	0.11
(ASAP F=0.11)	2015 Biomass	14858	5029
	\% inc B from 2014	12\%	20.6\%
	$\mathrm{F}<=$ Fref and a 10\% biomass increase in 2015		
	$\mathrm{F}<=$ Fref and biomass increase less than 10\% in 2015 $\mathrm{F}>$ Fref and biomass increase less than 10% in 2015 not feasible projection		

Summary - EGB Cod

- Biomass increasing, F reduced
- Recent rct generally poor, except for 2003 and 2010 yc
- 2010 year class highest since 1990; estimate still uncertain
- Reduced weights at age
- Lower biomass hampers improved recruitment
- Low numbers of 7+ fish
- Rebuilding will not occur without improved recruitment
- Model results uncertain; not adjusted for retrospective; used sensitivity analyses to interpret base model results
- Not exceeding F = 0.11 and achieving a 10% increase in biomass implies catches of less than 600 mt .

Eastern GB Haddock Management Unit

Management Unit Statistical Areas

USA: SA 561,562 CA: SA 551,552

Fishing Mortality (line)
EGB Haddock

2012 F = 0.16, below or near Fref since 1995

Biomass \& Recruitment-Historical perspective

-Adult (3+) biomass increased dramatically in 2000s due to the large 2003 year class.
-At the beginning of 2013, adult biomass was $183,600 \mathrm{mt}$.
-2003 and 2010 year classes are exceptionally large; 2011 year class is very strong (~ 74 million)

Recruitment

- Recruitment is highly variable but has generally been higher when adult biomass has been above 40,000 mt, which has been the case since 2001.
- $20133+$ biomass estimated at $183,600 \mathrm{mt}$.
- 2003 yc estimated to be 307 M and 2010 yc preliminary estimate of 474 M at age 1

Year class growth

- Size at age has decreased and maximum average size smaller
- 2003 year class values used for 2010 year class projection inputs

Projection

- Assuming a 2013 catch equal to the $10,400 \mathrm{mt}$ total quota, a combined Canada/USA catch of $31,500 \mathrm{mt}$ in 2014 results in a neutral risk (50\%) that the 2014 fishing mortality rate would exceed Fref $=0.26$
- Biomass in 2014 expected to be largest in times series; biomass expected to decline in 2015
- Used 2003 year class values for 2010 year class projection inputs.

27

- Assumed no growth for 2003 year class (9+) and reduced availability of ages 9+ to fishery

Summary - EGB Haddock

- 2012 quota not caught (bycatch and difficulty finding large haddock)
- Highest biomass in assessment time series
- Extremely variable recruitment
- 2010 and 2011 year classes will supply fishery for several years with large catches
- F has been below $F_{\text {ref }}$ since 2007
- Risk neutral 2014 F ref catch $=31,500 \mathrm{mt}$
- 2015 biomass projected to be 240,000 mt

Georges Bank
 Yellowtail Flounder

Georges Bank Yellowtail Flounder

USA catches: SA 522,525,561,562

CA catches: SA 551,552

Catch

2012 Catch (mt)	US	Canada	Total
Landings	443	46	488
Discards	188	45	234
Total	631	91	722
Quota taken	94%	16%	

DFO $2^{\text {nd }}$ lowest in time series DFO

NEFSC Fall

NEFSC Fall same past 3 years Low relative to recent 15 years Higher relative to mid-80s-90s

NEFSC Spring lowest since 1994 NEFSC Spring

NEFSC Scallop

NEFSC Scallop did not sample Canadian waters in 2011 or

Surveys

- Continued agreement among surveys

Total mortality (Z) estimates high

Survey Z estimates

Relative F

- Continued disagreement with survey Z
- If F has been low since 1995, where are the old fish?

Missing catch? Missing M? Missing F ?

Model

The Split Series formulation was approved at the last benchmark assessment and is used to estimate current stock size and fishing mortality.

The TRAC acknowledges that the assumptions made about population dynamics in the model do not fully capture the trends in the data. However, the model's conclusion that stock conditions are poor is valid.

TRAC recommends basing 2012 status and 2014 catches on the adjusted model projection results.

$S S B$

1994: $2,800 \mathrm{mt}$ 2003: 10,900 mt 2006: $2,400 \mathrm{mt}$ 2011: 3,100 mt 2012: $2,600 \mathrm{mt}$ 2012: 869 mt (rho adj)

Fishing Mortality

1994: 1.83
2003: 0.61
2006: 1.54
2011: 0.60
2012: 0.32
2012: 0.78 (rho adj)

Recruitment

1994: 13.2 million 2003: 10.6 million 2006: 10.1 million 2011: 2.3 million 2012: 2.3 million 2012: 1.2 million (rho adj) ${ }^{\circ}$

Year

Harvest Strategy

TMGC adopted a strategy to maintain a low to neutral risk of exceeding the fishing mortality limit reference, $\mathbf{F}_{\text {ref }}=\mathbf{0 . 2 5}$ (established in 2002 by the TMGC).

When stock conditions are poor, fishing mortality rates should be further reduced to promote rebuilding.

2014 Catch Advice

2014 Quota (mt)				
100	200	300	400	500

Split Series rho adjusted						
P(F>Fref)	0.26	0.97	1.00	1.00	1.00	<200
F2014	0.20	0.43	0.71	1.05	1.48	
delta B	60%	44%	27%	11%	-4%	
P(B inc)	1.00	1.00	1.00	1.00	0.21	<500
P(B inc 10\%)	1.00	1.00	1.00	0.66	0.02	optimistic?

- Quota of < 200 mt would be required to achieve high Prob. 2014 F<Fref
-"Catches well below 500 mt are likely needed to achieve the harvest strategy"
- Projection results may be optimistic given the assumption of 2012 rct.

Summary - GB Yellowtail Flounder

- Catch in 2012 low and below quota
- Surveys down or same from last year
- F_{2012} > Fref
- Biomass lowest in time series
- Recruitment poor recently
- Major retrospective issue
- 2014 catch advice well below 500 mt

