

New England Fishery Management Council

50 WATER STREET | NEWBURYPORT, MASSACHUSETTS 01950 | PHONE 978 465 0492 Rick Bellavance, *Chair* | Cate O'Keefe, PhD, *Executive Director*

MEMORANDUM

(Tables 2 and 3 are revised)

DATE: October 2, 2024

TO: Scientific and Statistical Committee

FROM: Scallop Plan Development Team

SUBJECT: Atlantic Sea Scallop OFLs and ABCs for FY 2025 and FY 2026 (default)

This memorandum forwards information to support the development of overfishing limit (OFL) and acceptable biological catch (ABC) recommendations for Atlantic sea scallops for fishing year (FY) 2025 and the default values for FY 2026. The Scallop Plan Development Team (PDT) met several times between July 25 and October 1, 2024, to develop this memo.

Overview

To develop OFL and ABC recommendations, the PDT reviewed survey information from the 2024 field season, relevant fishery and observer data, the latest stock assessment information and peer review reports (from 2020), and prior SSC and PDT reports. The OFL and ABC recommendations were developed using parameters from the 2020 management track assessment and applying the ABC control rule. As in previous years, the PDT recommends changes to 1) scallop shell-height meat-weights relationships used to develop survey biomass estimates and 2) natural mortality assumptions used in the Scallop Area Management Simulation (SAMS) model for areas at the southern end of the range. The PDT's OFL and ABC recommendations for 2025 and 2026 (default) are summarized in Table 1.

Table 1 - Scallop PDT recommendations for OFL and ABC for FY 2025 and 2026 (default).

Year	OFL (mt)	ABC (mt)
2025	28,970	22,840
2026	30,031	23,437

Methods to Develop OFL and ABC:

Adjustments to the 2024 survey data:

• Shell-Height to Meat-Weight (SHMW) Relationships: For Georges Bank and the Mid-Atlantic, SHMW parameters were updated through SARC 65 (2018), and applied in the 2020 Management Track Assessment. As with previous years, the PDT recommends using area-specific SHMW parameter estimates from the recent dredge surveys conducted in the NLS-South area to account for slow growth in this region. Gulf of Maine specific shell-height meat-weight relationships have not been developed or reviewed as part of a stock assessment. The PDT recommends using SHMW parameter estimates from recent dredge surveys supplemented with meat weight data collected to support the drop camera surveys, except for Platts Bank and Machias Seal Island, where the PDT recommends using parameter estimates from only the dredge survey data.

Adjustments to projections for FY 2024 (SAMS model):

• Natural mortality: Natural mortality assumptions for the Virginia and Delmarva areas was increased in 2023 based on overestimated projections in these areas in recent years, despite the limited fishing in these areas. The PDT recommends keeping these increased M values in the SAMS model in these areas to attempt to improve forecast performance. Evidence from 2024 suggests continued elevated M in Delmarva and the Elephant Trunk. The PDT does not recommend further ad-hoc adjustments to M, but rather that the effects of warming temperatures in the Mid-Atlantic on natural mortality be investigated in the ongoing Research Track assessment. In the meantime, the Council should be advised that forecasts from the southern Mid-Atlantic may be overestimated.

FY 2025 & FY 2026 (default) OFL and ABC Calculation:

• Gulf of Maine: Survey frequency and intensity have increased in areas outside of the scallop survey strata north and east of Cape Cod, including the Gulf of Maine and Northern Gulf of Maine (NGOM) management unit. The 2024 surveys expanded coverage and included Machias Seal Island and exploratory areas along the coast of Maine. Following the SSC's past recommendation to include the Gulf of Maine as part of the OFL and ABC, the Scallop PDT evaluated the survey data from this region and included it with Georges Bank and the Mid-Atlantic in the calculation of the OFL and ABC.

2025 & 2026 OFL and ABC Calculations

The updated OFL and ABC values for the Georges Bank and Mid-Atlantic regions are based on reference points from the 2020 management track assessment (OFL F=0.61; ABC F=0.45). Based on adjustments to the Scallop FMP through Amendment 21 and methods approved by the SSC in October 2021, scallops in the Gulf of Maine region (including the Northern Gulf of Maine management area) are now included in the overall OFL and ABC estimates. In the absence of reference points and a stock assessment model for the Gulf of Maine, the OFL and ABC estimates for the Gulf of Maine were derived using the Georges Bank F_{MSY} estimates from the 2020 management track assessment (F=0.46 for OFL, F=0.32 for ABC). This approach was recommended by the SSC in October 2021 and is explained in detail in the October 7, 2021, Scallop PDT memo to the SSC¹. The Council concurred with the SSC's approach of including scallop biomass from the Gulf of Maine in the overall OFL and ABC.

The OFL and ABC estimates for 2025 are lower than the 2024 (default) projections that were recommended by the SSC last year. The 2025 biomass projections indicate a slight decline in biomass from 2024 levels. Biomass remains well below the exceptionally high levels observed between 2015-2019, and this overall decline is attributed to the extraordinarily large 2012- and 2013-year classes being fished down and the absence of comparably strong recruitment in subsequent years. The biomass projection for 2026 is slightly higher than the estimate for 2025 due to the growth of a large set of scallops on Georges Bank in the Closed Area I Sliver and the Nantucket Lightship South. The majority of biomass for the stock is contained on Georges Bank (i.e., roughly 77% of total biomass according to the 2024 surveys).

Around half of the population is considered exploitable (Table 2). The PDT cautions that if higher than expected natural, incidental, or discard mortality occurs, biomass estimates will be overestimated, especially for 2026.

https://s3.us-east-1.amazonaws.com/nefmc.org/1.3-211007-Memo-PDT-to-SSC-RE-ABC-OFL-2022-2023.pdf
Scallop PDT memo to SSC
2
October 2, 2024

Table 2 - Estimated biomass (mt) and exploitable biomass (mt) for FY 2025.

	Biomass	Exploitable Biomass	Percent Exploitable
Georges Bank	74,313	36,126	49%
Mid-Atlantic	22,806	12,129	53%
Gulf of Maine	6,627	5,575	84%

Table 3 - 2025 Scallop ABC (mt, excluding discards) estimates by region.

	ABC	Percent Total of ABC
Georges Bank	12,013	67.1%
Mid-Atlantic	4,506	25.2%
Gulf of Maine	1,384	7.7%

Shell Height Meat Weight Parameters

The PDT has recommended deviations from the SARC 65 SHMW parameters in recent years in an effort to accurately characterize scallop condition in specific regions. The PDT has focused most on the Nantucket Lightship Region to account for unique growth of the 2012-year class in this area. The PDT recommends using SHMW parameters based on the last eight years of dredge survey data for biomass calculations of the NLS-South. While biomass has declined substantially in this area, given the unique growth characteristics of scallops in this area, the PDT recommends utilizing biological data from recent dredge surveys of the area to better inform SHMW relationships when projecting biomass. The PDT also notes that the difference in biomass estimates based on SARC 65 versus 2016-2023 dredge parameters for the NLS-South is small.

Figure 1 – 2024 shell height meat weight curves for the NLS region from the 2024 VIMS dredge survey. This figure refers to the previously used NLS-South-Deep area and does not refer to the new NLS-South area that was adopted by the PDT in September 2024

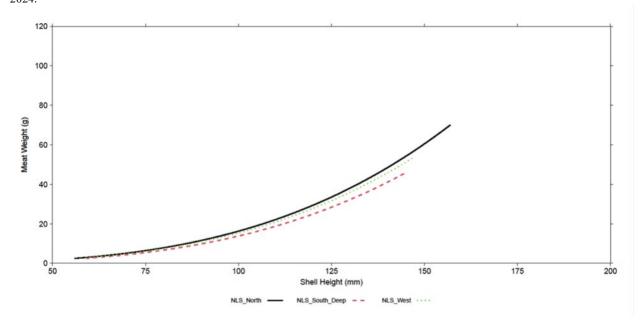


Table 4 – Comparison of biomass estimates from the 2024 SMAST drop camera survey using different shell height meat weight equations in the NLS-South. All values are for scallops greater than or equal to 40 mm in shell height. This table refers to the

previously used NLS-South-Deep area and does not refer to the new NLS-South area that was adopted by the PDT in September 2024.

	Biomass estimate using: VIMS equation.	Biomass estimate using: SARC 65 specific
	NLS South	SARC 03 specific
	NLS South	
Average meat weight (g)	2.0	1.5
Biomass (mt)	3411	2496
Standard error	1710	1252
Exploitable average meat weight	6.8	5.8
(g)		
Exploitable biomass (mt)	124	106
Exploitable standard error	62	53

Natural Mortality in Virginia and Delmarva (from 2023 memo to SSC)

Projections in Virginia and to a lesser extent Delmarva have consistently overestimated biomass and abundance in recent years, despite the limited fishing in these areas. Length-frequency distributions from dredge surveys suggest elevated levels of mortality in these areas at older ages (Figure 2). The PDT suspects that natural mortality has increased in these areas due to warming waters in the southern extent of the scallop resource, particularly in adult scallops, which is consistent with findings from Zang et al. 2022.

To estimate natural mortality in these areas, the Beverton-Holt length-based estimator was applied:

$$Z = \frac{K(L_{\infty} - \bar{L})}{\bar{L} - L_c}$$

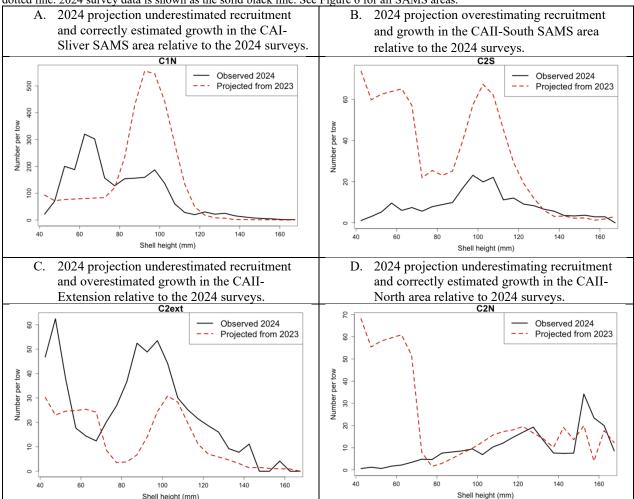
to the mean of the 2018-2021 > 40 mm size frequencies observed in these two areas, using $L_c = 42.5$ mm. The result was an adjusted Z for Virginia of 4.2, which was assumed to be all attributed to natural mortality given that no fishing occurs in this area. For Delmarva, adjusted Z was equal to 0.66 (i.e., 0.6 attributed to natural mortality, 0.06 attributed to fishing mortality given that some fishing has occurred here during the 2018-2021 timeframe).

0.25 0.20 0.00 2016 VIR 0.15 0.00 0.000.20 0.000.15 Fraction of Total 0.000.25 0.000.08 2021 DMV 0.000.20 0.00.2 0.000.25 0.00 0.20 0.000.20 20 0.000 0.3 100 50 100 150 150 Length Interval (mm)

Figure 2 - Length frequency from the VIMS dredge survey of Delmarva (DMV) and Virginia Beach (VIR) from 2015 - 2024. (Source: Dr. David Rudders, VIMS)

Overly Optimistic Projections and Adjustments to the SAMS Forecasting Model:

The PDT has tracked the forecasting performance of the SAMS model in recent years and has compared the survey estimates with projections since SARC 65 (i.e., 2019-2023) by calculating the projection error. The projection error is calculated as 100*(predicted biomass – observed biomass)/predicted biomass. Positive error means the projection was an overestimate, and negative error means the projection was an underestimate. 2023 projection error calculations are documented in the October 4, 2023 Scallop PDT memo to the SSC². The PDT did not calculate projection error for 2024 projections.

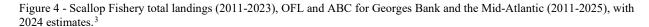

At the stock-wide level, the model performed well in estimating total biomass. While Georges Bank biomass was underestimated, the most substantial divergence in projections and survey results was in the Mid-Atlantic, where there appears to be systematic overestimation of abundance and biomass. The PDT suspects that environmental drivers, particularly at the southern extent of the range, is contributing to elevated levels of M. While the PDT continues to recommend an adjustment to M and Z in the Virgina Beach and Delmarva areas, 2024 surveys suggest that M is also elevated in Closed Area I. 2024 optical surveys noted high sea star predation in the area. The PDT noted that there is an ongoing research track assessment and felt that further adjustments to M should be handled systematically in the ongoing research track assessment.

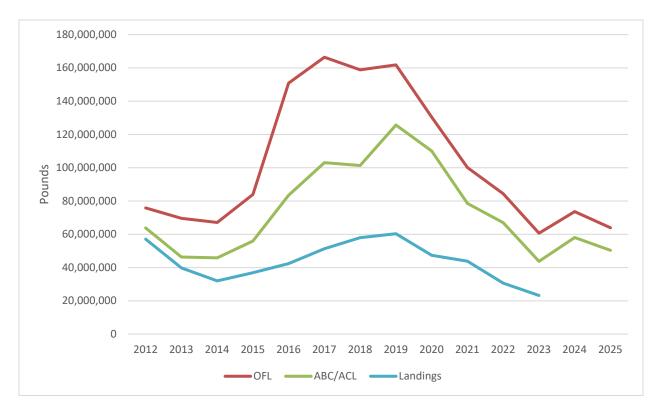
² https://d23h0vhsm26o6d.cloudfront.net/3_231004-Memo-PDT-to-SSC-RE-ABC-OFL-2024-2025-Final.pdf
Scallop PDT memo to SSC
5
October 2, 2024

The SAMS model considers area-specific (i.e., by SAMS area) growth parameters (i.e., L_{∞} , K) when making forward projections of biomass. The 2020 management track assessment adjusted growth rates to account for the recent slower than expected growth. This was a change from the 2018 benchmark assessment, which estimated growth in 2012-2016 to be the fastest on record. The PDT discussed the variability in growth rates used in the model over the past three years and noted that growth assumptions that are faster than realized growth could contribute to overly optimistic projections. Staying with the recommendation made in 2020, 2021, 2022, and 2023 to address this issue, the PDT recommends that SAMS area-specific assumptions of L_{∞} be scaled down proportionally from the most recent CASA period (i.e., 2012-2016) to the slowest growth period for the different regions included in CASA (i.e., 1993-1996 for Georges Bank, 1975-1977;1987-2003; 2006 for Mid-Atlantic; Table 10). For areas in the Gulf of Maine, the PDT recommends using growth parameters from Georges Bank, consistent with the 2023 approach.

Figure 3 - Comparison of 2024 L-F projections (based on 2023 data) with 2024 survey data. Projections are shown as the red

dotted line. 2024 survey data is shown as the solid black line. See Figure 6 for all SAMS areas.




6

Recruitment and Outlook

While scallop biomass is projected to increase between 2024 and 2025, the increases are driven by the continued growth of two-year old scallops on Georges Bank, and in particular the Nantucket Lightship South and Closed Area I – Sliver. Recruitment in both the Nantucket Lightship and Closed Area I – Sliver is considered to be strong, but not at the magnitude of the 2012 or 2013 year classes. In the Mid-Atlantic, pre-recruits were observed in the Elephant Trunk region, and to a lesser extent in the New York Bight region. Scallop biomass in 2024 was estimated to be 93,499 mt, far lower than the recent peak biomass estimated in 2017 of 265,277 mt.

The Council is considering rotational closures of NLS-S and the Elephant Trunk in FY2025 with the goal of optimizing yield of the juvenile scallops. Opportunities for access area fishing will be constrained to Area I and Area II on Georges Bank for FY 2025. Pre-recruits observed in the Nantucket Lightship and Elephant Trunk are susceptible to natural mortality at this life stage.

³ The 2022, 2023, and 2024 estimates include biomass from the Gulf of Maine. *Scallop PDT memo to SSC* 7

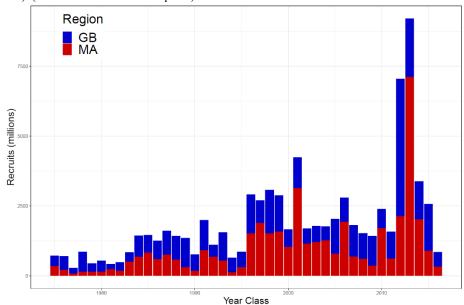


Figure 5 - Sea scallop recruitment (age 1) by region, 1975-2016. Regions are: Mid-Atlantic (MA, red) and Georges Bank (GB, blue). (Source: 2020 assessment update).

Scallop Rotational Management

While the OFL and ABC establish bounds for resource removals, in recent years, scallop rotational management has resulted in realized harvests (and corresponding fishing mortality rates) below these legal limits, however discard rates and discard mortality are uncertain. Fishery allocations are based on an average F that is below the reference points for this fishery. For example, in fishing year 2024, the ABC is 21,497 mt (not including discards), whereas fishery Annual Projected Landings were 11,609 mt. Based on initial discussions of rotational management alternatives for FW39, it is reasonable to expect that fishery removals in FY2025 will continue to be below the OFL and ABC estimates recommended in this memo. The Council considers a range of additional issues and uncertainties as part of the annual rotational management process, such as the proportion of available biomass that the fishery is likely to target ('effective biomass'), discard rates and mortality, and projection model uncertainty.

Responses to SSC Recommendations made in 2023:

In October 2023, the SSC recommended the OFL and ABC as developed by the PDT. The SSC made other comments and recommendations, which the PDT responds to here:

1. SSC Comment: The SSC recommended a thorough examination of the impacts of ecosystem and climate change on population dynamics through the ongoing Sea Scallop Research Track Stock Assessment. Furthermore, a description of these observations should be included in the Mid-Atlantic State of the Ecosystem Report. The SSC noted that it is imperative to translate the known vulnerability of sea scallops to climate change into an action plan for this fishery, and noted that the variety of available data streams (e.g. dredge, HabCam, drop camera) make this an ideal case study to examine the implications of climate change on northeast US fisheries and to help plan for potential impacts on other species that have dynamics that area less well understood.

<u>PDT Response</u>: The research track assessment review has been set for April of 2025. The TORs for the 2025 research track assessment are provided below. The evaluation of changes in stock dynamics and investigation of the environmental drivers affecting the productivity of the stock will be considered in the ongoing Research Track through TOR 1: "Identify relevant ecosystem and climate influences on the stock. Characterize the uncertainty in the relevant sources of data and their link to stock dynamics. Consider findings, as appropriate, in addressing other TORs. Report how the findings were considered under impacted TORs." The PDT understands that the Research Trach Working Group is in the process of addressing TOR 1, and that while the effects of climate and ecosystem change on population dynamics can be accounted for adjustments to natural mortality, no new environmental parameters will be added to the CASA model.

9

References:

Chang, J.H., Shank, B.V. and Hart, D.R. 2017. A comparison of methods to estimate abundance and biomass from belt transect surveys. *Limnology and Oceanography: Methods*, 15(5), pp.480-494.

Hart, D. R., Munroe, D. M., Caracappa, J. C., Haidvogel, D., Shank, B. V., Rudders, D. B., Klinck, J. M., Hofmann, E. E., and Powell, E. N. 2020. Spillover of sea scallops from rotational closures in the Mid-Atlantic Bight (United States). – ICES Journal of Marine Science, 77: 1992–2002.

Hennen, D.R. and Hart, D.R. 2012. Shell Height-to-Weight Relationships for Atlantic Sea Scallops (*Placopecten magellanicus*) in Offshore U.S. Water. Journal of Shellfish Research, 31(4):1133-1144.

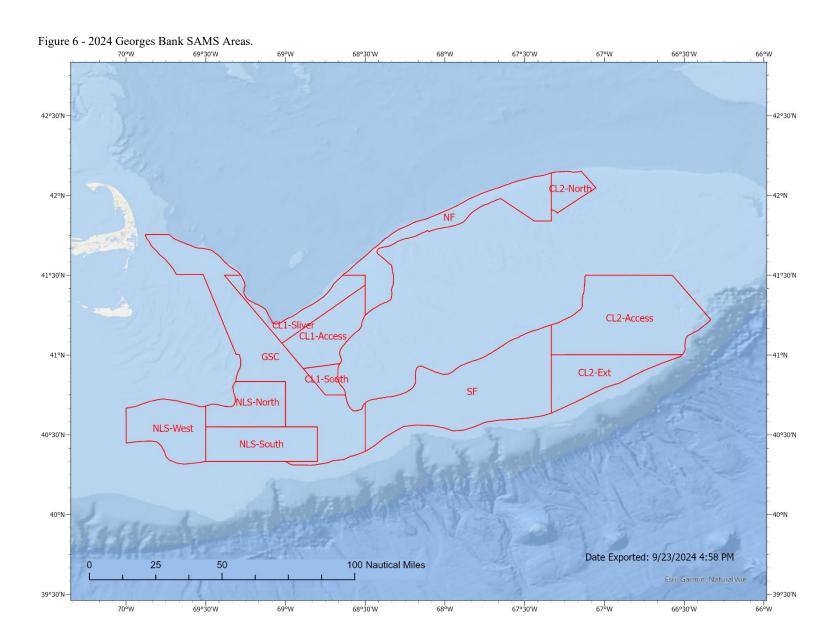
Hodgdon, C.T., Torre, M., and Chen, Y. 2020. Spatiotemporal variability in Atlantic sea scallop (*Placopecten magellanicus*) growth in the Northern Gulf of Maine. J. Northw. Atl. Fish. Sci., 51: 15–31. https://doi.org/10.2960/J.v51.m729

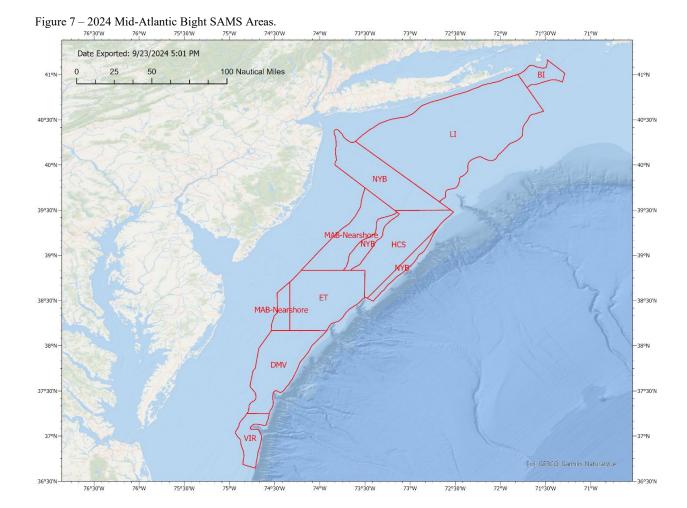
NEFSC. 2014. 59th Northeast Regional Stock Assessment Workshop (59th SAW) Assessment Report. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 14-09; 782 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026, or online at https://repository.library.noaa.gov/view/noaa/4803

NEFSC. 2018. 65th Northeast Regional Stock Assessment Workshop (65th SAW) Assessment Summary Report. Northeast Fish Sci Cent Ref Doc. 18-08; 38 p. Online at: https://doi.org/10.25923/vvpm-jy75

Rudders, D., S. Roman, A. Trembanis, and D. Ferraro. 2019. A study to assess the effect of tow duration and estimate dredge efficiency for the VIMS sea scallop dredge survey: final report. Marine Resource Report No. 2019-04. Virginia Institute of Marine Science, William & Mary. https://dx.doi.org/doi:10.25773/g9sh-qt28

Yochum, N. and DuPaul, W.D. 2008. Size-selectivity of the northwest Atlantic sea scallop (*Placopecten magellanicus*) dredge. Journal of Shellfish Research, Vol. 27, No.2, 265-271.


Zang, Z., Ji, R., Hart, D. R., Chen, C., Zhao, L., & Davis, C. S. 2022. Modeling Atlantic sea scallop (*Placopecten magellanicus*) scope for growth on the Northeast US Shelf. Fisheries Oceanography, 31(3), 271-290.


Table 5 – Final combined survey estimates for 2024 by SAMS areas, including values from the GOM and Northern Gulf of Maine Management Area.

2024 Survey Estimates- Final version - Sep 16, 2024

			Dre	dge			Drop (Camera			Hab	Cam			Me	ean	
Region	Subarea	Num	Bmsmt	SE	MeanWt	Num	Bmsmt	SE	MeanWt	Num	Bmsmt	SE	MeanWt	Num	Bmsmt	SE	MeanWt
GB	CL1-Sliver	1180	14025	4747	11.9	1052	13103	9235	12.5	1064	16755	438	15.7	1099	14628	3464	13.3
GB	CL1-Access	5	108	39	20.8	81	1773	2166	21.8	26	894	102	34.4	38	925	723	24.7
GB	CL1-S	0.04	0.1	0.1	2.5	14	596	719	42.9	3	67	28	22.3	6	221	240	39.1
GB	CL2-N	209	8154	3605	39.0	365	12625	2464	34.6	303	12837	82	42.4	292	11205	1456	38.3
GB	CL2-S	169	4910	1494	29.1	234	5703	718	24.4	222	6427	174	29.0	208	5680	556	27.3
GB	CL2-Ext	273	3838	1227	14.1	253	4090	636	16.2	215	3668	131	17.1	247	3865	463	15.7
GB	SF	637	5364	906	8.4	1188	8451	5004	7.1	1292	10162	308	7.9	1039	7992	1698	7.7
GB	NLS-N	26	594	152	22.8	279	1762	2145	6.3	37	168	89	4.5	114	841	717	7.4
GB	NLS-S	6677	9089	4418	1.4	4652	10416	4204	2.2	2897	10564	710	3.6	4742	10023	2047	2.1
GB	NLS-W	110	878	45	8.0	159	3799	4028	23.9	140	3011	11	21.5	136	2563	1343	18.8
GB	NF	104	1068	318	10.2	112	1781	950	15.9	100	1987	158	19.9	106	1612	338	15.3
GB	GSC	637	5364	906	8.4	623	8637	6049	13.9	261	5446	267	20.9	507	6482	2041	12.8
GB	TOTAL	8846	39366	6166	4.4	7961	59633	10641	7.5	5496	55231	877	10.0	7434	51410	4110	6.9
MAB	ВІ	56	683	161	12.1					25	323	21	12.9	41	503	81	12.4
MAB	LI	837	7026	461	8.4					629	7200	98	11.4	733	7113	236	9.7
MAB	NYB	192	2179	126	11.3					218	2176	20	10.0	205	2178	64	10.6
MAB	MAB-Nearshore	6	56	6	9.3					20	149	4	7.5	13	103	4	7.9
MAB	HCS	1022	4995	409	4.9					758	3843	20	5.1	890	4419	205	5.0
MAB	ET	1765	6776	622	3.8					1374	5185	23	3.8	1570	5981	311	3.8
MAB	DMV	46	141	24	3.1					149	384	7	2.6	97	263	13	2.7
MAB	VIR	119	397	126	3.3									119	397	63	3.3
MAB	TOTAL	4043	22253	908	5.5					3173	19260	107	6	3668	20955	457	5.7

GOM	Stellwagen South-SMAST Stellwagen	43	860	167	20.0	40	427	71	10.7					42	644	91	15.5
GOM	South-Outside SMAST Stellwagen	1	46	22	35.5									1	46	22	35.5
GOM	South - Total	44	906	168	20.5									43	690	93	16.1
NGOM	WGOM Closure					69	2640	261	38.3					69	2640	261	38.3
NGOM	Fippennies					31	699	194	22.5					31	699	194	22.5
NGOM	Cashes Stellwagen-					3	77	52	25.7					3	77	52	26
NGOM	SMAŠT	32.5	1196	643	36.8	34	944	693	27.4					33	1070	668	32.0
NGOM	Stellwagen- Outside SMAST	4.2	149	75	35.5									4	149	75	35.5
NGOM	Jeffreys-SMAST	12.1	341	305	28.2	7	163	48	23.3					10	252	177	26.4
NGOM	Jeffreys-Outside SMAST	5.4	215	127	39.8									5	215	127	39.8
NGOM	Platts	2.2	29	18	13.2	4	43	17	11.3					3	36	18	12.0
NGOM	Ipswich Machias Seal	21.5	550	243	25.6	9	163	63	18.1					15	357	153	23.4
NGOM	Island	18.4	322	117	17.5									18	322	117	17.5
NGOM	TOTAL	96	2802	1411	29.1	157	4729	1328	30.1					174	5817	1217	33.5
NGOM	TOTAL - Open	96	2802	1411	29.1	54.2	1313	821	24.2					71	2079	1724	29.3
GRA	AND TOTAL	12986	64421	6390	5.0	8149	65061	10725	8.0	8669	74491	883	8.6	11276	78182	4311	6.9

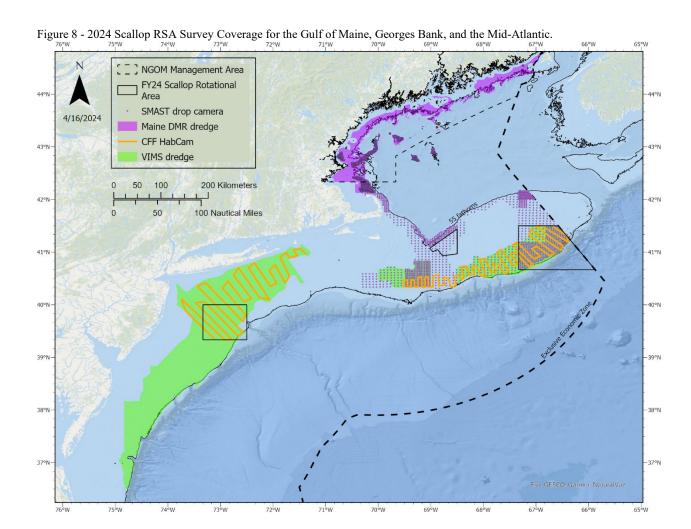
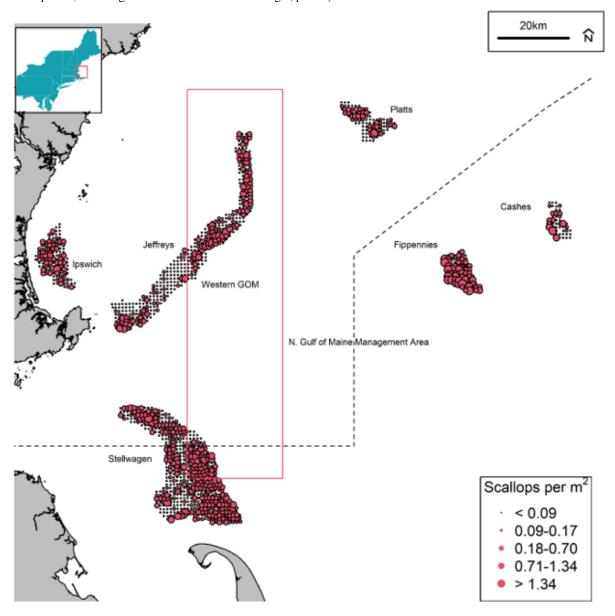
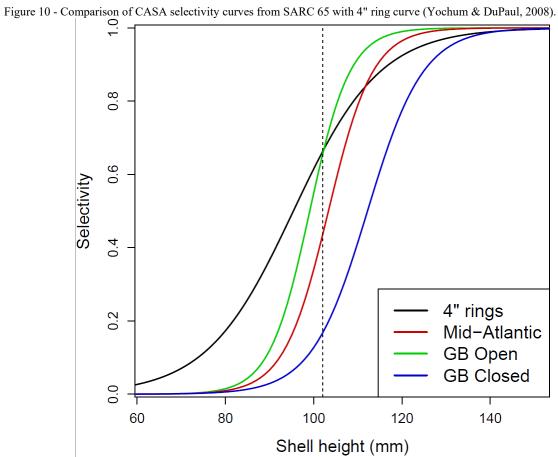




Figure 9-2024 Scallop RSA survey coverage for the Gulf of Maine by the SMAST drop camera relative to the Northern Gulf of Maine Management Area (dotted black line), Western Gulf of Maine Closure area (solid red line). Mean scallop density (all scallop sizes, including those less than 40mm shell height, per m^2).

Appendix I: 2024 Projections for 2025 – Outputs and Assumptions

2024 Projections for Georges Bank and the Mid-Atlantic:

- 1. Several changes were made to the model configuration from Framework 38. The NYB-Closure area was removed and reverted to the previous SAMS area boundaries, with 8 areas in MA, 12 in GB, and 4 in the Gulf of Maine. Ipswich Bay was added as a new SAMS area in the Gulf of Maine, and Machias Seal Island was added to the NGOM-Open SAMS area (see Figure 9).
- 2. Initialized using the average (mean) of available 2024 survey data.
- 3. No changes were made to growth assumptions between 2023 and 2024. Continued to use slow growth assumptions from 2020 management track assessment where L_{∞} is reduced in all SAMS areas except CAII-S and NLS-South to match observed growth. In the GOM, growth was set to match GB estimates from the most recent period.

Table 6 - Projected biomass and exploitable biomass for 2025 for Georges Bank and Mid-Atlantic SAMS area and the Gulf of Maine.

SAMS/Region	Biomass (mt)	Exploitable (mt)	ACL (GB/MA F=0.45; GOM F=0.32) (mt)
HCS	4873	2455	844
Vir	467	0	0
ET	6657	3224	1147
DMV	396	53	31
NYB	2230	1510	561
LI	7503	4620	1750
Inshore	680	267	173
MAB TOTAL	22806	12129	4506
CA1-N	15337	4245	1896
CA1-Mid	1262	765	249
CA2-N	14166	12369	3485
CA2-S	5899	3313	1139
CA2-Ext	3957	2495	894
NLS-W	3195	309	108
NLS-N	932	473	174
NLS-S	12109	682	213
GSC	6910	4435	1611
NF	1711	873	362
SF	8835	6167	1882
GB TOTAL	74313	36126	12013
Stell-S	731	388	131
Stell-NGOM	1256	1023	269
Ipswich	362	279	76
NGOM-Other	847	715	178
NGOM-Cl	3431	3170	730
GOM TOTAL	6627	5575	1384

Table 7 - Comparison of the meat weight and growth parameters used in recent SAMS configurations for GB and MA.

Table 7 - C	omparison of the meat weight and growth parameters used	
	Meat weight	Growth
2015	SARC 59	SARC 59
2016	SARC 59, with changes to SH-MW parameters using VIMS 2016 data (NLS-S, NLS-NA, NLS-ext)	SARC 59, with reductions to growth in NLS
2017	SARC 50, with changes to SH-MW parameters in NLS using VIMS 2016 & 2017 data (NLS-S, NLS-NA).	SARC 59, with reductions to growth in NLS-S deep (>70m) based on observed growth between 2016 and 2017. Change ET-Flex L infinity to 110 mm based on observed growth in 2016 and 2017.
2018	SARC 65, with changes to SH-MW parameters in the NLS using VIMS 2016 – 2018 data	SARC 65, with reduction in L_{∞} in NLS-W to 119mm. SARC 65 set the L_{∞} of scallops in the NLS-S-deep at 110 mm.
2019	SARC 65, with changes to SH-MW parameters in the NLS using VIMS 2016 – 2019 data	SARC 65, with reduction in L_{∞} in NLS-W to 119mm. SARC 65 set the L_{∞} of scallops in the NLS-S-deep at 110 mm.
2020	SARC 65, with changes to SH-MW parameters in the NLS using VIMS 2016 – 2020 data (NLS-S, NLS-N, NLS-W)	SARC 65, scaled to the growth expectations from the 2020 management track assessment for all areas except NLS-South and CAII-SW.
2021	SARC 65, with changes to SH-MW parameters in the NLS-South using VIMS 2016 – 2021 data NGOM-Stellwagen-AOI using ME DMR/UMAINE 2021 SH-MW (w/covariates)	SARC 65, scaled to the growth expectations from the 2020 management track assessment for all areas except NLS-South and CAII-SW.
2022	SARC 65, with changes to SH-MW parameters in the NLS-South using VIMS 2016 – 2022 data. Changes to NYB-closure using 2015-2022 data. Stellwagen Region using ME DMR/UMAINE 2021 SH-MW (w/covariates). Other areas using Hart 2020 SHMW curves.	SARC 65, scaled to the growth expectations from the 2020 management track assessment for all areas except NLS-South and CAII-SW. GB growth applied to areas of the GOM.
2023	SARC 65, with changes to SH-MW parameters in the NLS-South using VIMS 2016 – 2023 data. Changes to NYB-closure using 2015-2023 data. DMR & SMAST (2016-2023) SH-MW for all GOM areas.	SARC 65, scaled to the growth expectations from the 2020 management track assessment for all areas except NLS-South and CAII-SW. GB growth applied to areas of the GOM.
2024	SARC 65, with changes to SH-MW parameters in the NLS-South using VIMS 2016 – 2023 data. DMR & SMAST (2016-2024) SH-MW for all GOM areas, except for Platts Bank and Machias Seal Island, which used the DMR SH-MW (2016-2024) parameters.	SARC 65, scaled to the growth expectations from the 2020 management track assessment for all areas except NLS-South and CAII-S. GB growth applied to areas of the GOM.

Γable 8 - 2024 Survey Data Treatments by SAMS areas for GB, MA, NGOM, and GOM.					
GB	SHMW equation, Dredge Efficiency	Treatment, notes			
CL1-Access (M)	SARC 65	Survey mean			
CL1-Sliver (N)	SARC 65	Survey mean			
CL1-South	SARC 65	Survey mean			
CL2-North	SARC 65, select station (.13 at 2 stations)	Survey mean			
CL2-S	SARC 65	Survey mean			
CL2-Ext	SARC 65	Survey mean			
NLS-North	SARC 65	Survey mean			
NLS-South	VIMS 16-23	Survey mean			
NLS-West	SARC 65	Survey mean			
NF	SARC 65	Survey mean			
GSC	SARC 65	Survey mean			
SF	SARC 65	Survey mean			
MidAtlantic					
BI	SARC 65	Survey mean			
LI	SARC 65	Survey mean			
NYB	SARC 65	Survey mean			
MAB-Nearshore	SARC 65	Survey mean			
HCS	SARC 65	Survey mean			
ET Open	SARC 65	Survey mean			
ET Flex	SARC 65	Survey mean			
DMV	SARC 65	VIMS Dredge Data (no other survey data)			
VIR	SARC 65	VIMS Dredge Data (no other survey data)			
Gulf of Maine and	Northern Gulf of Maine				
NGOM - Stellwagen	DMR & SMAST (2016-2024) SH-MW	Survey mean, GB Open Selectivity			
Ipswich Bay	DMR & SMAST (2016-2024) SH-MW	Survey mean, GB Open Selectivity			
NGOM Other	DMR & SMAST (2016- 2024) SH-MW, except for Platts Bank and Machias Seal Island, which use DMR (2016-2024)	Survey mean for Jeffreys Ledge and Platts Bank, DMR dredge data for Machias Seal Island.			
GOM Closed	DMR & SMAST (2016-2024) SH-MW	SMAST Drop Camera only, inside WGOM closed area on Stellwagen and Jeffreys, Fippennies Ledge, Cashes Ledge.			
Stellwagen South	DMR & SMAST (2016-2024) SH-MW	Survey mean			

Table 9 - Description of the SH-MW changes in Nantucket Lightship and New York Bight Closure SAMS areas from 2016 to 2024.

SAMS	SH-MW	SH-MW	SH-MW	SH-MW	SH-MW	SH-MW	SH-MW	SH-MW	SH-MW
area	applied in 2016, FW28	applied in 2017, FW29	applied in 2018, FW30	applied in 2019, FW32	applied in 2020, FW33	applied in 2021, FW34	applied in 2022, FW36	applied in 2023, FW38	applied in 2024, FW39
NLS-N	SARC 59	SARC 50	VIMS 2016- 2018 Combined	VIMS 2016- 2019 Combined	VIMS 2016- 2020 Combined	SARC 65	SARC 65	SARC 65	SARC 65
NLS-S 'Shallow' (>70m)	SARC 59	SARC 50	VIMS 2016- 2018 Combined (South Shallow only	VIMS 2016- 2019 Combined	VIMS 2016- 2020 Combined (Merged into one	VIMS 2016- 2021 Combined (Merged into one	VIMS 2016- 2022 Combined	VIMS 2016- 2023 Combined	VIMS 2016- 2023 Combined
NLS-S 'Deep' (<70m)	VIMS 2016	VIMS 2016/2017 Combined (NLS S)	VIMS 2016- 2018 Combined (Deep only)	VIMS 2016- 2019 Combined	SAMS area in 2020)	SAMS area in 2020)			
NLS-Ext	VIMS 2016	SARC 50	SARC 65	N/A (part of GSC)	N/A (part of GSC)	N/A (part of GSC)	N/A	N/A	
NLS-W	VIMS 2016	VIMS 2016/2017 Combined (NLS W)	VIMS 2016- 2018 Combined (West only)	VIMS 2016- 2019 Combined	VIMS 2016- 2020 Combined	SARC 65	SARC 65	SARC 65	SARC 65
NYB- Closure	N/A		•				VIMS 2015- 2022	VIMS 2015- 2023	N/A

Estimate of relative meat weight were derived using the following assumptions: Length = 100 mm, mean depth by SAMS area used. Mean depth for NLS-S SAMS area calculated by depth bin. Mean latitude by SAMS area used for SARC 50.

Table 10 - Comparison of SARC 65 and FW39 growth parameters

	•	SARC-65		FW-39 (202	0
				Track grow	th)
Subarea	Years	\mathbf{L}_{∞}	K	\mathbf{L}_{∞}	K
GSC	12-16	150.3	0.397	135.7	0.397
NF	12-16	148.8	0.397	134.3	0.397
SF	12-16	137.3	0.464	123.9	0.464
CAI	12-16	149.4	0.397	134.5	0.397
CAII	12-16	146.9	0.397	132.3	0.397
CAII-SW	12-16	146.9	0.397	146.9	0.397
NLS	12-16	151.2	0.397	136.1	0.397
NLS-S	15-16	110.3	0.423	110.3	0.423
DMV	08-12	136.4	0.547	130.5	0.547
ET	08-12	137.9	0.547	131.9	0.547
HCS	08-12	129.5	0.547	123.9	0.547
NYB	08-12	140.8	0.547	134.6	0.547
LI	08-12	139.6	0.547	133.5	0.547
Inshore	08-12	147.3	0.547	140.8	0.547

Table 11 – FW39 natural mortality parameters by SAMS area

Region	Subarea	M
Gulf of Maine	NGOM - Stellwagen	0.2
Gulf of Maine	Ipswich Bay	0.2
Gulf of Maine	NGOM Other	0.2
Gulf of Maine	GOM Closed	0.2
Gulf of Maine	Stellwagen South	0.2
Georges Bank	GSC	0.2
Georges Bank	NF	0.2
Georges Bank	SF	0.2
Georges Bank	CAI	0.2
Georges Bank	CAII-S	0.2
Georges Bank	CAII-Ext	0.2
Georges Bank	NLS	0.2
Georges Bank	NLS-S	0.2
Mid-Atlantic	DMV	0.6
Mid-Atlantic	ET	0.25
Mid-Atlantic	VIR	4.2
Mid-Atlantic	HCS	0.25
Mid-Atlantic	NYB	0.25
Mid-Atlantic	LI	0.25
Mid-Atlantic	Inshore	0.25

Table 12 - OFL and ABC estimates with discards for FY2025 and FY2026. Values in metric tons.

Year	ACL	OFL	ACL	OFL	ABC	OFL
	Landings	Landings	Discards	Discards		
2025	17901	22440	4939	6530	22840	28970
2026	17745	22475	5692	7556	23437	30031