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Part |I: Data and Methods Overview

Multiple operating models represent uncertainty
Defined in Workshop #1 Sarah Gaichas

Herring recruitment (high or low?)
Herring natural mortality (high or low?)
Herring growth (good or poor?)

Herring assessment error/bias (yes or no?)

Evaluate ABC control rules for each OM
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Uncertainties

At the May Workshop we identified uncertainties:
Herring recruitment m
Herring natural mortality m
Herring growth
Herring assessment error/bias



Growth

good and poor growth operating models
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Uncertainties

At the May Workshop we identified uncertainties:

Herring recruitment m

Production Growth
Herring natural mortality m Hi Lo Good  Poor
Herring growth X X
V] X X

Herring assessment error/bias




Spawning Stock Biomass

Assessment Error and Bias
unbiased and biased operating models




Assessment Error and Bias
unbiased and biased operating models

Biased assessment results in
biomass higher than reality
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Based on the stock assessment retrospective pattern



Uncertainties

At the May Workshop we identified uncertainties:

Herring recruitment m Prqduction Growth Assessment bias

Hi Lo Good Poor On Off
Herring natural mortality m X X X
. X X X
Herring growth [/] ) ) )
Herring assessment error/bias m X X X

X X X

X X X

X X X

X X X

Uncertainties combined into 8 different operating models
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Predator models

Stolen or adapted from presentations |
By Dr. Sarah Gaichas, NEFSC ;

Spiny Dogfish
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Predator models

Are

* Focused on evaluating stock-
wide herring ABC harvest
control rules applied annually

e Developed balancing Council/
stakeholder specifications and
time constraints of MSE

e Based on information from the
Northeast US shelf and most
recent stock assessments

Are not

e Spatial, do not address local
scale or seasonal dynamics

* New or full stock assessments

e Accounting for any impacts on
predators other than changes
due to herring control rules

* Intended to predict actual
predator population dynamics
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Two components of predator modeling

Predator population model Herring—> predator relationship
e Delay-difference dynamics  What about herring...
e Information required: e Total abundance? Biomass?
e Stock-recruitment relationship * Certain ages or sizes?
 Natural mortality rate e Affects what about the predator
e Fishing mortality rate e Predator growth
* |nitial population size e Predator reproduction
e Weight at age e Predator survival

* Assessments or observations * And how? Base on observations
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Predator population model summary

Stakeholder
preferred species

Species modeled

Stock-recruitment
(or adults, recruits)

Natural mortality

Fishing mortality
Initial population

Weight at age

Bluefin tuna

Bluefin tuna
(western Atlantic
stock)

Porch and Lauretta
2016, ICCAT 2015

ICCAT 2015

ICCAT 2015
ICCAT 2015
Restrepo et al. 2010

Common tern

Common tern
(Gulf of Maine
colonies as defined
by GOM Seabird
Working Group)

Derived from
GOMSWG data

Nisbet 2002

n/a
GOMSWG data
Nisbet 2002

Not specified

Spiny dogfish
(GOM and GB
Atlantic cod stocks
also examined)

Rago and Sosebee
2010

Rago and Sosebee
2013, 2015

Rago 2016
Rago 2016
Rago et al. 1998

Not specified

None, data limited
(Minke & humpback
whales, harbor
porpoise, harbor
seal examined)

No time series data
for our region

Derivable from
Waring et al. 20157

Waring et al. 20157
Waring et al. 2015?

General literature
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Predator-prey relationships:
Northeast US Herring vs. Antarctic krill

Killer whale

Lecpard seal

Antarctic petrel

| , Crabeater 5-::1/' Rk

Patagonian
teathfish
’ Keill
Herring, +
anchovies F :
and squids "-'ﬁ Carnivone
oo Herbivore
LR Primary producer
Algae
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Herring—> Predator relationship issues/caveats

e Predator populations are affected
by MANY factors, prey is one

* Northeast US predators have
MANY prey options, herring is one

e Time limitation enforced model
simplicity for these complex
relationships

e Our approach is to use the best-
supported relationship for each
predator based on observations
from the Northeast US ecosystem

e [solating a clear herring—>predator
relationship from observations is
difficult or impossible (e.g. cod)

e Even with good observations, the
modeled herring—> predator
relationship may require strong
assumptions and not be
statistically significant (e.g. terns)

e Apparent positive herring—>
predator relationships may not
arise from the modeled
mechanism (e.g. dogfish)
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Predator relationships summary

Predator and overlap

e Western Atlantic bluefin tuna
Forage throughout North Atlantic,
seasonally in GOM

e Common terns

Forage seasonally near island breeding
colonies in GOM

e Spiny dogfish
Forage through same range as herring
most of the year

e Marine mammals

Modeled herring relationship

>Herrin% opulation averagﬁ weight
affects bluefin tuna growt

»Herring total biomass affects
common tern reproductive success
(productivity)

»Herring total abundance affects
dogfish survival

» Food web model simulations
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e Our models do not address herring/tuna interactions in a specific place or time. Tuna follow

herring and likely aggregate around herring while feeding.

. I\/Ve Ican (ilraw no conclusions from our modeling about predator/prey co-occurrence at the
ocal scale.

* Similarly, without additional observations, we cannot extrapolate local scale co-occurrence
to population level relationships.
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Top groundfish predators of herring (nersc, 1972-2015)

100% -

90%

B0%

T8

BO%

50%

40%

30%

20%

10%

0%

“ All others
Floundears

" Eelpouts

¥ pdackerels

W Brittle stars

“Analks

¥ Cods

E Fish eggs

5 Unid fish

Hgrifl

B 5ea urchins

B Crabs

B Comb gellies

B Crystaceans

B Harrings

B Caphalopods

Bgjyalves

B unid

B Arnphipods

W 5and lancas

23



dogfish GBcod GOMcod

Dogfish, Georges

Bank cod and Gulf

of Maine cod all

ate herring in ——
proportion to >
herring abundance, :

1972-2015. 100000 - SN - = -
However, increased - — P
herring in diet was At i
positively related 1 . 5
to spawning stock - .
biomass only for S Ly A
dogfish.

AN -
-'_'\.FIUL"_F'\-I

SSB

20 40 60 0 20 40 60 O 20 40 60
dietprop

o

24



o Herring =2
Dogfish
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* The dogfish relationship assumes herring abundance improves
dogfish survival because no clear relationship was found with
recruitment or growth.

* Increased survival may not be the mechanism for the observed
positive influence of herring in diet on the dogfish population.

25



Predator Modeling Summary

 Our models are designed for evaluating alternative herring control
rules, not predator stock assessment and population prediction.

e We caution against generalizing results for these particular predators
to other predators, as population parameters and herring
relationships differ.

e Although we selected predators with high herring diet proportions,
observed predator population responses to herring alone do not
dominate dynamics, and our herring—> predator models reflect that.

* Predator responses to aggregate prey dynamics are likely to be much
clearer than responses to individual prey in the Northeast US
ecosystem given its food web structure.



Herring Output Metrics — From Workshop #1

* Spawning Stock Biomass & SSB relative to SSB,,., & SSB

e Probability that

e SSB < SSB,,cy & 0.5 SSB,,., (Probability of overfished)
* SSB < 0.3 SSB, ¢itoq & 0.75 SSB

* Probability that F > F,,., (Probability of overfishing)
* Yield and yield relative to MSY
* Interannual yield variation

unfished

unfished

* Probability that Atlantic herring fishery closes
e Proportion of the herring population that is age-1
* Amount of herring dying due to natural mortality



Predator Output Metrics

Predator Metrics:

* Frequency that dogfish are not overfished
* Frequency that tern production >=1

e Frequency that tuna weight > average



Output Metrics

Economic

e Yield: output of the herring model
e Net revenue = (price*yield) — cost

e Stability = the degree to which net revenue was “stable” or “streaky”
(i.e., fairly steady over time vs. booms and busts)

* Net revenue and stability demonstrate similar tradeoffs as herring
yield and variation in yield, and so not presented in detail



Pause for Questions on Part |?

Data and methods developed for
VMISE models
(herring, predator and economic)



Part Il —Analysis of Potential Control Rules

Fishing Mortality or Catch
[ )

Biomass or Abundance



Six Control Rule Types presented at Workshop #2

Biomass based

Biomass based with 3 year block

Biomass based with 5 year block

Biomass based with 3 year block and 15% restriction

Constant catch

o U s whe=

Conditional constant catch with max F = 0.5Fmsy



Control Rules

biomass based

Three ‘parameters’ with many variants

Upper biomass parameter

/ > Max F parameter

Fishing Mortality

/ Biomass or Abundance

Lower biomass parameter



Control Rules
biomass based

Three ‘parameters’ with many variants

Upper biomass parameter = Lower biomass parameter =0

—> Max F parameter

Fishing Mortality

Biomass or Abundance



Control Rules
biomass based

Three ‘parameters’ with many variants

Upper biomass parameter = Lower biomass parameter >0

—> Max F parameter

Fishing Mortality

Biomass or Abundance



Control Rules
biomass based

Three ‘parameters’ with many variants

Evaluated 16 different values for each biomass threshold
ranging from O to 4x Bmsy

Evaluated 10 different values for maximum F ranging
from 0.1 to 1.0x Fmsy

1,360 combinations



Control Rules
status quo — biomass based with 3 year block
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Control rules

Constant Catch
One parameter

Evaluated 10 different values ranging from 0.1 to 1x
MSY

Catch

Biomass or Abundance



Control Rules
Conditional Constant Catch

Two parameters

Evaluated 10 different values ranging from 0.1 to 1x
MSY with max F of 0.5Fmsy

Catch
0.5Fmsy

Fishing Mortality

Biomass or Abundance Biomass or Abundance



Control Rule Types and Shapes

Biomass based

Biomass based with 3 year block

Biomass based with 5 year block

Biomass based with 3 year block and 15% restriction
Constant catch

Conditional constant catch with max F = 0.5Fmsy

1,360 alternatives
1,360 alternatives
1,360 alternatives
1,360 alternatives
10 alternatives
10 alternatives

5,460 alternatives
X 8 operating models

43,680



Control Rules

For each operating model, each control rule alternative was simulated for 150
years and this was repeated for 100 simulations

Performance Metric (e.g., spawning biomass

Year 41




Prelim Results — Herring Yield vs Stability
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Frequency Dogfish > 0.5Bmsy vs herring SSB

BB BB3yr BBSyr BB3yrPerc CC and CCC
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Frequency tern prod > 1.0 vs herring SSB
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Frequency tuna good condt’n vs herring SSB
good herring growth

BB BB3yr BBSyr BB3yrPerc CC and CCC
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Post Workshop #2

e At workshop: less support for BB with 15% restriction and CC/CCC

- Too much yield lost for short-term stability, poor performance elsewhere
- More likely to require short-term deviations in application

e Post workshop: Herring AP and Committee tasked with:
1) identifying priority metrics and tradeoffs; and
2) identifying a reasonable number of CR alternatives.

e Herring PDT prepared 4 example control rule shapes, and evaluated
their performance for a handful of possible metrics.



Control Rules

Biomass based 1,360 alternatives

Biomass based with 3 year block 1 360 alternatives
Biomass based with 5 year block ’

Biomass-based-with-3-yearblockand 1,360 alternatives

15%restriction 1360 alternatives
Constantcateh 10-alternatives
~onditi | h it) .

10alternatives
=0-5Fmsy

4,080 alternatives
X 8 operating models
43-680 32,640
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Let’s Compare 4 CRs

1. Examine tradeoffs and uncertainty in tradeoffs
2. Examine effect of assessment bias
3. Examine effect of annual ABC, 3 year blocks, and 5 year blocks



YieldMSY
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YieldMSY

1. Examine tradeoffs and uncertainty in tradeoffs

Let’s Compare 4 CRs

all with 3 year block —unbiased assessment

Results more certain here

Yield/MSY vs. 2 - Frequency
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1. Examine tradeoffs and uncertainty in tradeoffs
Note some CRs more

robust than others Let’s Compa re 4 CRS
all with 3 year block —unbiased assessment

Yield/MSY vs.
) Frequency SSB
© - <30% unfished
O_lO O_|2 O_|4 O_|6 0_|8 1_|O

Frquency SSB < 30%Unfished 29



Frequency Tuna Wt = Avg

1. Examine tradeoffs and uncertainty in tradeoffs
Note some CRs more

robust than others Let’s Compa re 4 CRS
all with 3 year block —unbiased assessment

. Freq. tuni )
; 7] weight>Avg. | -
© VS. .
SSB/unfished i Freg. tern
. i . prod. >=1 vs.
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Examine tradeoffs and uncertainty in tradeoffs

Let’s Compare 4 CRs

all with 3 year block —unbiased assessment

Frequency
° dogfish>0.5Bmsy
: vs. SSB/unfished
o_lo O_|2 O_|4 0_|6 O_|8 1_|O

SSB/Unfished 57



Examine tradeoffs and uncertainty in tradeoffs

Let’s Compare 4 CRs.

all with 3 year block —unbiased assessment
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Let’s Compare 4 CRs

e What metrics/tradeoffs do you value most?

e For example, if you highly value yield then you likely favor CRs with certainty in high
amounts of yield, but do you get “acceptable” performance for other metrics?
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2. Examine effect of assessment bias

Let’s Compare 4 CRs

all with 3 year block — effect of assessment bias

Note some CRs more
robust than others, esp.
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Let’s Compare 4 CRs

» Relying solely on biased results may duplicate other processes
 We make adjustments for bias (e.g., retrospective adjustments)

* We have peer review
* We have an SSC

e Robustness to bias, which did vary among CRs, desirable



Longer blocks cost yield 3.  Examine effect of annual ABC, 3 year blocks, and 5 year blocks
and SSB

Status Quo CR —comparing 1, 3, and 5 years

YieldMSY

Hi_0.5_Lo_0_MaxF_0.9 Hi_0.5_Lo_0_MaxF_0.9
Yield/MSY vs. Yield/MSY vs.
" SSB/unfished " Frequency
2 - 2 Overfished
O_|O O_|2 O_|4 O_lﬁ O_|8 1_|0 O_ll] O_|2 O_|4 O_lﬁ O_|8 1_|O

SSB/Unfished Frequency Overfished



Let’s Compare 4 CRs

* |s the short-term stability of longer blocks worth the cost in: yield, long-term
variation in yield, frequency of overfished, decrease in frequency of desired
tern production?

e What is industry’s preferred planning horizon?



Other Considerations

e Other tradeoffs of interest?

* |dentifying or refining CR alternatives can by achieved by:

e Specifying preferred performance for various metrics
 Moving CR parameters (Hi and low thresholds and Max-F); “What if?”



Pause for Questions on Part I1?

Preliminary analyses of potential
control rule alternatives





