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Abstract

It is becoming increasingly popular to use continuously collected acoustic or optical data to estimate

abundance or biomass of fish and invertebrates. However, data from such systems are typically highly spatial-

ly autocorrelated and zero-inflated, and thus simple design-based estimation techniques are not applicable.

Model-based estimation methods can be used to extrapolate observations along the observed track to larger

areas. We tested the precision and accuracy of three model-based methods using both simulations and field

data: Ordinary kriging (OK), Generalized Additive Models with kriged model residuals (GAM 1 OK), and Gen-

eralized Additive Mixed Models with kriged model residuals (GAMM 1 OK), along with a design-based meth-

od (stratified mean, SM). The GAMM 1 OK method treats small-scale variations as random effects, whereas

the other approaches aggregate nearby data to reduce autocorrelation and random errors. We found that the

GAM 1 OK method with relatively small aggregation lengths generally gave the best performance of the

model-based methods in terms of both accuracy and precision, followed by GAMM 1 OK. SM estimates were

more accurate and precise than the model-based estimates in the simulations, but only when the study

region was stratified accurately. Based on the simulation and field data analysis results, we selected the

GAM 1 OK method to estimate scallop abundance and biomass for the Georges Bank and the Mid-Atlantic

Bight regions for the years 2011–2015. We also provided SM estimates based on careful stratifications to vali-

date the model-based estimates.

Many types of survey data are collected continuously,

such as acoustic data and photographs from towed or auton-

omous underwater vehicles. Because the samples produced

from these “belt transect” surveys are not random, simple

design-based estimators of the population mean and vari-

ance are not directly applicable. For this reason, model-based

estimation is often used to estimate population abundances

(Petitgas 1993; Simard et al. 1993; Maravelias et al. 1996;

Simard and Lavoie 1999; P�aramo and Roa 2003; Hedley and

Buckland 2004; Mello and Rose 2005; Georgakarakos and

Kitsiou 2008; Rivoirard et al. 2008; Williams et al. 2011)

although design-based methods have also been used (Jolly

and Hampton 1990; Brandt et al. 1991; Singh et al. 2013).

The fundamental difference between design-based and

model-based approaches is that for the design-based meth-

ods, the population is regarded as fixed and the survey data

are the measured characteristics of this population, whereas

for the model-based methods, the observed population is

only one realization of a stochastic process (S€arndal et al.

1978; Smith 1990). Design-based methods based on stratifi-

cations require no assumptions regarding the underlying

population, but the samples drawn from each stratum must

be randomized so that they are independent and identically

distributed. Failure to meet the randomness requirement

may cause bias in variance estimates (Cochran 1977). On the

other hand, although model-based estimation methods do

not require random sampling, they are typically based on

strong assumptions regarding the nature of the underlying

population. For example, one popular model-based method,

ordinary kriging (OK), is based on the assumptions that the

population means and covariances are spatially stationary.

Real populations may not satisfy these assumptions, which

can cause the model-based estimators to be biased.

The purpose of this paper is to evaluate a number of

potential methods to estimate the population abundance or

biomass of non-stationary populations, based on surveys

that collect abundance and biomass data continuously, using

both simulations and real data. These include OK, and two

variations of regression kriging (RK) that can take into

account large-scale trends and covariates in the data: Gener-

alized Additive Models on spatially aggregated data with

kriged model residuals (GAM 1 OK), and Generalized Addi-

tive Mixed Models where small-scale variations are treated as

random effects, combined with kriged model residuals*Correspondence: deborah.hart@noaa.gov
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(GAMM 1 OK). In addition, a design-based method based on

stratified means (SM) is also evaluated.

Although the methods described here should be applica-

ble to a wide variety of continuously collected optical and

acoustic data, we focus here on observations of sea scallops

(Placopecten magellanicus) collected using the vessel-towed

underwater digital habitat mapping camera system (Hab-

Cam) as an example case. HabCam was developed through

collaborations between scientists at the Woods Hole Oceano-

graphic Institution, the Northeast Fisheries Science Center

(NEFSC), and with commercial fishermen to survey benthic

communities, and to map sea floor habitats (Howland et al.

2006; Taylor et al. 2008; NEFSC 2010). The cameras on Hab-

Cam take rapid-fire still photos of the sea floor (typically 6/s)

as it is towed at speeds between 5 and 7 knots at about 2 m

above the bottom. Region-scale HabCam surveys for sea scal-

lops were conducted on Georges Bank (GB) in 2011, and on

both GB and the Mid-Atlantic Bight (MAB) in 2012–2015.

Scallop data from HabCam are highly spatially autocorre-

lated and zero-inflated (i.e., a high percentage of the data are

zeros; Table 1; Fig. 1), reflecting the patchiness of scallop

distributions and the continuous nature of the observations.

Materials and procedures

Simulation design

The simulated area was 50 km longitude and 100 km lati-

tude (the shape and size are similar to Hudson Canyon

South rotational management area in the MAB; NEFSC 2014)

with a 100 m grid size. Scallop spatial distributions are non-

stationary due to the influences of the physical and biologi-

cal environment such as substrate, depth, temperature, and

predator distributions (Brand 2006; Hart 2006). The simulat-

ed scallop populations are therefore assumed to vary non-

randomly according to large-scale trends, termed the “first-

order effect.” For simplicity in the simulations, these trends

are assumed to be (non-linear) functions of longitude only.

In reality, depth and other environmental factors may be

important predictors of the trend; longitude is treated as a

surrogate for depth and other environmental factors in the

simulations. Stationary “second-order effects,” representing

small-scale spatially autocorrelated variability, were added to

the first-order trends. Various first-order and second-order

effects were simulated to test whether the abundance and

biomass estimation methods are robust to type of spatial dis-

tributions of the underlying population.

We simulated the first-order trend using a double logistic

function
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where a and b parameters determine the shape of the logistic

curve, i and j are the longitude and latitude, respectively,

and imax is the east boundary of the longitudes. The simulat-

ed first-order effects are greatest in the middle and decrease

logistically toward the left and right edge of the simulation

domain (Fig. 2); this pattern mimics the observed distribu-

tion of sea scallops in the MAB, where scallop densities are

the greatest at intermediate depths (Hart 2006). We simulat-

ed two types of first-order effects: one where the population

is more concentrated in the middle area, whereas they are

more spread out in the second (Fig. 2).

We simulated the second-order effects using stationary

Gaussian random fields with spherical isotropic covariance

structures (Cressie 1993):

Fig. 1. Histogram of HabCam abundance data (numbers/m2) for MAB in 2013 (left) and from one of the simulated populations (right).
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where c0, c1, and r are the nugget, partial sill, and range

parameter, respectively, and h is the distance between two

points. The nugget/sill ratio ( c0

c01c1
) determines the extent of

the random variability and r determines the aggregation size

of the second-order effects. We simulated combinations of

two levels of the nugget/sill ratio (0.4 and 0.6) and two lev-

els of the range parameter (100 and 300) resulting in four

types of second-order effects: small or large aggregation sizes,

with low or high random noise (Fig. 3). Parameter values

were based on estimates from the actual HabCam data.

Scallop distributions are patchy, resulting in data that are

highly zero-inflated (Table 1; Fig. 1). To reflect the extent of

the zero inflation observed in the actual data, only 10% of

the locations with the highest sums of first- and second-

order effects in the simulations were taken to have non-zero

scallop densities; the other 90% of the sites were set to zero

density (Fig. 1).

Eight types of population distributions, from two types of

first-order and four types of second-order effects were simu-

lated (Fig. 4). We generated 30 realizations for each

population type, and then scaled the total abundance and

biomass of each realization so that total biomass and abun-

dance was the same. Each simulated population was sur-

veyed using 30 different tracks (where the starting point

and first turn of the track were varied). Shape and direction

of the simulated tracks was designed to mimic the actual

HabCam survey design, in which the long transects are

approximately in the direction of the gradient of density.

The length of these long transects are alternated: one long

transect extends to the boundary of the survey area, fol-

lowed by a short transect extending to the edge of the mid-

dle high density area (NEFSC 2014). This design covers the

middle higher density areas more intensely than the more

marginal areas toward the edges of the domain in order to

improve survey efficiency. Additionally, it has cross-transects

near the high density middle portion of the domain that facili-

tate estimation of anisotropy. By contrast, a simpler design

where each main transect was the same length would have all

its cross transects at the edges of the domain, where densities

are close to zero, which would give less information on the

directional structure of the population.

We used model-based and designed-based methods to

estimate total biomass and abundance for the simulated pop-

ulations. These methods were evaluated using relative bias

(RBias) and relative root mean square error (RRMSE)

Fig. 2. The two types of first-order effects used to simulate scallop populations: one where the high density central region is narrow (left) and one
where it is wide (right). The colors represent simulated first-order effects to scale scallop densities.
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where T̂ i is the estimated total biomass or abundance for

sample sets i, l is the true population abundance or biomass,

and n is the total number of sample sets analyzed. We also

evaluated the RBias of the estimated coefficient of variation

(CV) of the abundance or biomass estimates.

Model-based estimation

Kriging is one of the most widely used geostatistical

method for spatial interpolation (Webster and Oliver 2001).

We tested performance of the three different kriging meth-

ods: OK, GAM 1 OK, and GAMM 1 OK on the simulated scal-

lop populations. OK is a standard kriging method based on

the assumptions of stationary means and covariances (Web-

ster and Oliver 2001; Hengl 2009). In some cases, the popu-

lation may be anisotropic, that is, its variability may be

directionally dependent. Based on the assigned first-order

effects, the simulated populations should have the largest

variations along the horizontal axis, due to the strong longi-

tudinal (depth) effects. Therefore, we built both the isotropic

and anisotropic models (08 and 908) and tested four types of

commonly used variogram models including spherical, expo-

nential, Gaussian, and Mat�ern models (Cressie 1993). Of

these models, the one that minimized the root mean square

error (RMSE, square root of sum of squared deviations of the

model predictions from the observed values) was selected.

Total abundance or biomass (T) and its variance from this

model were calculated as:

T̂5A
Xn

i51

ẑi (5)

Var T̂
� �

5A2
Xn

i51

Xn

j51

Cov ẑi; ẑj

� �
; (6)

where ẑi is the kriging estimate at location i and A is the

grid size.

RK extends OK to account for a potentially non-linear

global trend. This trend can be estimated using a generalized

regression model (e.g., GLM or GAM), potentially with a

series of ancillary predictors, and then OK is performed on

the residuals of the regression model to model the second-

order effects (Odeh et al. 1995; Hengl 2009). The final RK

predictions are obtained by summing the regression pre-

dicted values and the kriged residuals.

Fig. 3. The four types of second-order effects used to simulate scallop populations: large and small aggregations with low random noise and large
and small aggregations with high random noise (from left to right). The colors represent simulated scallop densities based on second-order effects
only.

Table 1. Summary of HabCam data for sea scallops.
“Annotated images” is the total number of images where scal-
lops were noted and measured. “Images w/scallops” is the num-
ber of annotated images in which scallops were observed.

Stock Year

Annotated

images

Images

w/scallops

GB 2011 202,257 21,428

GB 2012 36,304 7189

GB 2013 33,864 4671

GB 2014 47,452 7107

GB 2015 50,558 6025

MAB 2012 20,969 2095

MAB 2013 42,213 3627

MAB 2014 45,393 5997

MAB 2015 61,771 10,000
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Because HabCam scallop data are zero-inflated (as is com-

mon with population counts), we used a two-staged “hurdle”

model to estimate the first-order effects, where presence/

absence and the level of biomass or abundance at a non-zero

site are modeled separately and then combined to derive the

final estimates (Barry and Welsh 2002; Smith et al. 2012;

Zuur et al. 2012). The hurdle model is given by the

distribution:

y5
0 with probability p

u hð Þ with probability 12p;

(

where p is the probability of a zero observation and h is a

vector of parameters for the statistical distribution u of posi-

tives (abundance or biomass; Smith et al. 2012). A quasi-

binomial quasi-likelihood was assumed for the probability of

presence model, and a quasi-Poisson quasi-likelihood for the

positive model that estimates abundance (or biomass), given

presence.

A “quasi-likelihood” is an assumption of the relationship

between the variance and mean of the observations (Wed-

derburn 1974); in the quasi-Poisson, the variance is

assumed to be proportional to the mean, whereas in the

quasi-binomial, the variance is proportional to p(1-p), where

p is the mean. Quasi-likelihoods allow fitting of the

GAM(M)s without assuming a specific probability distribu-

tion. In particular, they can account for overdispersion, where

the variance increases faster than the mean, which is com-

monly observed in aquatic populations in general, and scal-

lops in particular.

We estimated the first-order effects using a two-

dimensional spline function of latitude and longitude in

both the GAM and GAMM models. The spatial residuals

obtained from the large-scale model were used to estimate

fine-scale spatial patterns using OK with the same estimation

process described above. We estimated the total abundance

and biomass of GAM 1 OK and GAMM 1 OK model estimates

as:

T̂5A
Xn

i51

x̂iŷ i1ẑi; (7)

where x̂i is the probability of presence estimate, ŷ i is the esti-

mate of abundance or biomass given that scallops are pre-

sent, and ẑi is the kriged residual at location i. By assuming

that x̂ and ŷ are independent, the variance of the T̂ was cal-

culated as

Fig. 4. Example realizations of the eight types of simulated scallop population distribution with an overlaid sampling track (black line). The colors
represent simulated scallop biomass densities (g/m2).
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� �


(8)

Data for model-based estimation

In order to reduce the extent of the zero inflation and

autocorrelation among nearby data points, the data were

blocked into segments of a fixed length along the tracks. For

OK and the hurdle GAM, data within each segment were

aggregated into a single data point, with its position taken

to be the average of the locations of images, weighted by the

field of view of the images in that segment. The hurdle

GAMM, by contrast, uses each data point individually, but

treats within segment variations as random effects. Treating

the data within each segment in one of these ways is neces-

sary because nearby data are autocorrelated, which causes

the effective sample size to be well less than the total num-

ber of data points. In particular, GAMs (without random

effects) are based on the assumption that data points are

independent, which would be strongly violated if the data

were not aggregated. This is a common technique used

when analyzing fisheries acoustic data (Mello and Rose

2005). The length of the segment should be sufficient to

reduce the degree of random variability and spatial autocor-

relation of the data, while at the same time small enough to

preserve spatial structures (Mello and Rose 2005). There is no

prior knowledge on what the segment length should be used

for Atlantic sea scallop and also how sensitive the segment

length is for this type of analysis. Therefore, we evaluated

the effects of segment length to average the data or deter-

mine random effects along the tracks. Scallop aggregations

tend to occur at scales of around 1 km (NEFSC 2010), so we

tested three segment lengths, 0.75 km, 1.5 km, and 2.25 km.

The segment lengths used in the analysis is equivalent to the

grid size A, which is the grid size for interpolation.

Design-based estimation

We tested a SM method to estimate the total abundance

and biomass from the simulated data. Only the horizontal

transects (along lines of latitude in the simulations) were

used in the SM estimation. Because some transects do not

extend to the low density edges of the domain, while others

do, it is necessary to post-stratify the horizontal transects

into two strata based on high and low first-order effects (Fig.

5). We calculated the mean and its variance of the simulated

scallops (t) by segment (j) and stratum (i) as:

�t i;j5

Pni;j

k51 ti;j;k

ni;j
(9)

Var �t i;j

� �
5

Var ti;j;k

� �
ni;j

; (10)

where ni;j is the number of images by segment and stratum.

Total abundance (or biomass) and its variance were estimat-

ed as (Cochran 1977):

T̂5A
X2

i51

Si

Pni

j51
�t i;j

ni
(11)

Fig. 5. Alternative types of stratifications (black line) used for SM estimations. The colors represent the simulated scallop densities based on the first-
order effects only.
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Var T̂
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5A2
X2

i51

S2
i

Xni

j51

Var �t i;j

� �
n2

i

; (12)

where ni is the number of segments by stratum i, and Si is

the area size of stratum i.

The simulation domain was well-stratified based on the

first-order trend and the length of the short transects. How-

ever, the same precise information may not be available

when dealing with the real data. For this reason, we tested

the sensitivity of SM estimates to post-stratification error by

widening (SMW) and narrowing (SMN) the central high

abundance or biomass stratum by 20% (Fig. 5) and then esti-

mated the SMs based on these less perfect stratifications.

HabCam data

The HabCam data were collected during 2011–2015 in GB

and 2012–2015 in MAB. We divided the GB and MAB stock

regions into 14 subregions based on geographic characteris-

tics and management areas and analyzed them separately

because their topology, orientation, and covariance struc-

tures differ. Images taken at altitude higher than 4 m were

excluded from the analysis because of their poor image qual-

ities. Only scallops with measured shell height larger than

40 mm were used in the analysis because of concerns about

full delectability of very small scallops. We converted the

shell height (SH) measures to meat weights (g) (MW) using

MAB : MW 5 216:8814:64log SHð Þ11:57log Dð Þ
20:43log SHð Þlog Dð Þ

(13)

GB : MW5 14:3812:826log SHð Þ20:529log Dð Þ25:98log Lð Þ;
(14)

where D is depth (in meters) and L is latitude (Hennen and

Hart 2012). Total count and weight in an image were stan-

dardized into abundance and biomass per m2 by dividing by

the field of view of the image. A summary of the HabCam

data used by year is listed in Table 1.

For model-based estimations on the real data, we enlarged

each subregion by 1 km and used the data within this expanded

area to build the subregional models. The average of weight or

count (t) by image (j) and segment (i) weighted by field of view

(f) for every segment along the tracks was calculated as:

�t i5
Xni

j51

fi;jti;jPni

j51 fi;j
(15)

The �t i was weighted by both variation (s) and number of

images (n) in hurdle GAM using

wi5
si2s 1ð Þ

2 s nið Þ2s 1ð Þ
� �1

ni2n 1ð Þ

2 n nið Þ2n 1ð Þ
� � ; (16)

where numbers in parentheses represent order statistics (e.g.,

s 1ð Þ represents the 1st order statistic, i.e., the minimum of the

sis). Hurdle GAMs and GAMMs were fitted using quasi-

binomial quasi-likelihoods for the presence/absence model

and quasi-Poisson quasi-likelihoods for the positive model to

estimate the first-order trend with respect to latitude, longi-

tude, and depth. Depth is correlated with latitude and/or

longitude. To prevent potential problems cause by this col-

linearity, latitude and longitude were transformed into com-

posite variables: latitude plus longitude, half of the latitude

or longitude plus longitude/latitude. We built models includ-

ing depth plus one of either latitude, longitude, or a lati-

tude/longitude combination. Depth was included in all of

the candidate models because it is one of the most impor-

tant variables that affect scallop distributions. The maximum

amount of knots for each term in the GAM and GAMM was

limited to 15 for the interaction terms (reduced to 10 for

some of the subregions) and 10 for the single terms to pre-

vent from overfitting. The final first-order model was select-

ed using RMSE from a 10-fold cross validation. We then

performed OK on the model residuals, tested isotropic and a

series of anisotropic (from 0 to 180 by 208) residual OK mod-

els, and selected the final OK model using the MedSE:

MedSE5
Xn

i51

Median �̂t i2�t i

� �
(17)

The 2013 HabCam data was used to evaluate the perfor-

mance of the three model-based methods on actual data,

using a range of segment lengths (0.5–1.75 km by 0.25 km)

for estimating the total biomass. The first-order effects were

estimated using a smooth function of depth and the selected

latitude/longitude combination for both the GAM and

GAMM approaches. Model performance was evaluated by

comparing model predictions to observations from other sur-

veys that are not used in the estimation model, including

dredge surveys from the NEFSC (Hart and Rago 2006) and

the Virginia Institute of Marine Sciences, and video drop

camera surveys from the School for Marine Science and

Technology at the University of Massachusetts, Dartmouth

(Stokesbury et al. 2004). Dredge data were expanded using

dredge efficiencies of 0.41 on sand substrates and 0.27 on

rougher gravel/cobble substrates (NEFSC 2014). Stations from

these other surveys were not typically located on the Hab-

Cam transects, and thus model interpolations from the Hab-

Cam data at the station locations could be compared to the

actual survey data. We also used out-of-sample HabCam

data, typically center lines that were not part of the basic

survey design and were not used to estimate the models, for

the same purpose. The MedSE criterion was used to deter-

mine the model that best predicts these other survey

observations.

For the SM on the real data, each transect was split into

segments and the data within each segment were aggregated

to help mitigate autocorrelation. We first separated the

transects into segments at locations where the direction of
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the transects changed between parallel and perpendicular to

the depth contour. These were further separated by depth

strata or by locations where the distance of any two points

in the segment was larger than 2 km. These were broken

into even smaller pieces if the length of the segments were

longer than 10 km (see Fig. 6 for an example).

We estimated thresholds for the depth strata from a maxi-

mum likelihood based change-point analysis (Killick et al.

2010), using the depth partial residuals from GAMs of abun-

dance or biomass with respect to depth constructed for each

subregion. The thresholds were detected based on changes in

mean and/or variance of the partial residuals. Each subregion

was post-stratified into a maximum of three depth strata sep-

arately for each year and for abundance and biomass data.

We estimated the mean abundance (or biomass) and its

variance by segment and stratum using Eqs. 9 and 10. An

example of the calculated mean and CVs for each segment

for 2015 biomass data is in Fig. 7. These mean and variances

were weighted by total field of view (f ) and length of the

segment (d) to estimate the total abundance or biomass and

its variance

T̂5A
X3

i51

Si

Xni

j51

wi;j
�t i;j (18)

Var T̂
� �

5A2
X3

i51

S2
i

Xni

j51

w2
i;jVar �t i;j

� �
; (19)

where ni is number of segments within depth stratum i, Si is

the size of depth stratum i, and wi;j is the weighting factor

wi;j5
di;j2di; 1ð Þ

2 di; nið Þ
� �

2di; 1ð Þ
Þ1

fi;j2fi; 1ð Þ

2 fi; nið Þ2fi; 1ð Þ
� � ; (20)

where the numbers in parentheses represent order statistics.

Assessment

Model testing using simulations

The proportion of converged model runs was 99% for

GAM 1 OK and OK but only 52–72% for GAMM 1 OK (Table

2). The type of simulated population and survey track did

not affect the optimal model or segment length; results were

thus not separated by these factors. Among the three model-

Fig. 6. Transect segmentation for 2015 SM biomass estimation based on orientation to depth contour and distance between points (2 km) (left),
depth strata (center), and the final segmentations (right) for GB (upper panel) and MAB (lower panel).
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Fig. 7. Mean biomass (top or left; g/m2) and CV (bottom or right) by segments for 2015 for (a) GB and (b) MAB.
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based methods, GAM 1 OK produced the least biased and

most precise abundance and biomass estimates, followed by

GAMM 1 OK and then OK (Table 2). GAM 1 OK also pro-

duced the least biased CV estimates, followed by OK and

then GAMM 1 OK (Table 2). The RBias and RRMSE of the

abundance and biomass estimates tend to increase with

increasing segment length (Table 2). The increase was the

most for OK models and the least for GAMM 1 OK models.

The RBias of the CV estimates tend to increase for

GAM 1 OK and GAMM 1 OK models and decrease for OK

models with increasing segment length (Table 2). Taking

both bias and precision of the estimates into account, the

GAM 1 OK with 0.75 km segments was the best performing

model-based method, and also produced the least biased CV

estimates for both biomass and abundance estimates.

The RBias and RRMSE for the properly stratified SM esti-

mates were smaller than all the model-based estimates but

the CVs were highly underestimated (Table 2). Additionally,

SM estimates were sensitive to the quality of post-

stratification; SMW and SMN estimates were more biased

and less precise than most of the model-based estimates

(Table 2).

Model testing using 2013 HabCam biomass data

Both model fittings and validations showed that no single

modeling approach was always superior, but GAM 1 OK gen-

erally performed the best, followed by GAMM 1 OK and

then OK (Table 3). The models performed slightly better

when segment length is small.

Application: 2011–2015 HabCam data analysis

Based on the simulation and the 2013 field data analysis

results, the GAM 1 OK method with 0.75 km aggregation

length was used to estimate total abundance and biomass for

each subregion in GB and MAB for 2011–2015. We also

Table 2. Summary of RBias and RRMSE for mean and CV, nugget/sill (N/S) ratio, and percent of converged sample runs (out of
7200) for biomass and abundance estimates by segment length and estimation methods.

Biomass Abundance

Model

type

Segment

length (km)

RBias

(mean)

RRMSE

(mean)

RBias

(CV)

N/S

ratio

%

converged

RBias

(mean)

RRMSE

(mean)

RBias

(CV)

N/S

ratio

%

converged

GAM 0.75 0.04 0.19 20.12 0.28 99.90 0.03 0.19 20.11 0.22 99.94

GAMM 0.75 0.08 0.20 0.21 0.28 71.94 0.07 0.19 0.38 0.23 58.46

OK 0.75 0.14 0.25 0.60 0.18 99.93 0.14 0.24 0.58 0.12 99.97

GAM 1.5 0.05 0.21 0.12 0.25 99.79 0.04 0.20 0.15 0.19 99.78

GAMM 1.5 0.08 0.20 0.95 0.27 64.32 0.08 0.20 1.32 0.22 52.13

OK 1.5 0.15 0.26 0.49 0.12 99.47 0.15 0.25 0.45 0.09 99.43

GAM 2.25 0.06 0.22 0.46 0.21 99.75 0.06 0.21 0.88 0.17 99.67

GAMM 2.25 0.08 0.21 0.67 0.26 70.36 0.08 0.20 1.39 0.20 61.57

OK 2.25 0.16 0.28 0.29 0.10 99.63 0.16 0.27 0.27 0.07 99.43

SM 0.00 0.18 20.61 0.00 0.17 20.66

SMN 0.23 0.35 20.67 0.22 0.34 20.72

SMW 0.14 0.25 20.60 0.14 0.25 20.66

Table 3. The frequency of model type and segment lengths that best fit observations of dredge, drop camera, or out-of-sample
HabCam data for the 14 subregions in GB and MAB for 2013.

Segment length (km)

and model type HabCam

NEFSC

(dredge)

SMAST

(drop camera)

VIMS

(dredge) Total

0.5 2 1 5 8

0.75 3 1 3 7

1 2 3 2 1 8

1.25 5 5

1.5 2 3 2 7

1.75 5 1 6

GAM 5 8 2 6 21

GAMM 7 5 1 3 16

OK 2 1 1 4
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provided SM estimates with careful stratifications (although

the CV of the SM estimates are probably understated) as well

as the stratified mean estimates from NEFSC and VIMS

dredge surveys to validate the model-based estimates (Hart

and Rago 2006; NEFSC 2014). GAM 1 OK, SM, and dredge

abundance and biomass estimates and their CVs for both

stocks for 2011–2015 are in Table 4, and an example of the

interpolation surface for 2015 biomass is in Fig. 8.

GAM 1 OK estimates agreed well with SM estimates, except

for one subregion each in 2014 and 2015. Simple linear

regressions of GAM 1 OK estimates against SM estimates for

all years and subregions without the two outliers gave inter-

cepts and slopes of 2123.93 and 1.13 for the abundance esti-

mates and 260.14 and 1.01 for the biomass estimates (with

the two outliers the intercept and slope are 2282.03 and

1.34 for the abundance estimates and 21820.47 and 1.21 for

the biomass estimates). GAM 1 OK and SM annual estimates

for both stocks are similar to the dredge estimates, except for

the estimates for MAB in 2015. The calculated CVs of the SM

estimates were lower than the CVs of GAM 1 OK for both

abundance and biomass.

Discussion

Our work highlights the importance of incorporating

large-scale trends in spatial distribution modeling when such

trends exist. The large-scale trends that occur in both the

simulated and real data violate one of the basic assumptions

of OK, namely that the population is (weakly) spatially sta-

tionary. As a result, the simulations and field data analysis

demonstrated that OK estimates were biased and imprecise

because they do not account for the large-scale trends. RK,

in our case using GAM 1 OK or GAMM 1 OK models, can

account for these trends and was performed better than OK.

Similar conclusions were reached in studies of fish (Yu et al.

2013), soil (Knotters et al. 1995; Odeh et al. 1995), and solar

radiation distributions (Alsamamra et al. 2009). In most

cases, the GAM 1 OK approach usually performed better

than the GAMM 1 OK, but the reasons for this is unclear;

one possibility is that the algorithms used to estimate

GAMMs are not giving as stable or as reliable estimates as

GAMs using only fixed effects.

The OK method was the most sensitive to the aggrega-

tion/grouping length, followed by GAM 1 OK and then

GAMM 1 OK. The reduced sensitivity of GAMM models is

probably because it treats small-scale variations as random

effects, rather than simply averaging the data within each

segment. The estimated nugget/sill ratios decreased more by

segment length for GAM 1 OK and OK but less so for

GAMM 1 OK models (Table 2). Averaging data could reduce

the resolution of local information and smear small-scale

spatial structures. This could cause misrepresentations of local

conditions when the segment length is larger than the natural

aggregations of target species, especially when the aggregations

are relatively small and dense. The increase of bias and decrease

of precision with increasing segment length is more severe for

the simulated population with smaller ranges and denser

patches (Table 5). This is a particular problem for OK since the

large-scale trends are not modeled.

Anisotropy had relatively less influence on the biomass and

abundance estimates compared to the model type and the seg-

ment length. Much of the anisotropy in the data was induced

by large-scale trends. For this reason, the OK method was more

sensitive to anisotropy than the RK approaches. Ignoring

anisotropy can cause inaccurate and imprecise abundance and

biomass estimates, especially when OK alone was used. For

example, the anisotropic OK models for biomass in the north-

ern flank area of GB in 2013 varied by as much as 40%.

Although the RK approach performed well in our analysis,

it was criticized by Cressie (1993) and Lark et al. (2006)

Table 4. Estimates of abundance and biomass from 2011 to 2015 HabCam data using the GAM 1 OK and SM methods, compared
to concurrent scallop dredge survey estimates for these years. The 2015 GB dredge survey estimate is not available due to lack of
coverage of some high density areas.

Number (million) Weight (mt)

Stock Year SM GAM1OK Dredge

SM

CV

GAM1OK

CV

Dredge

CV SM GAM1OK Dredge

SM

CV

GAM1OK

CV

Dredge

CV

GB 2011 3992 3832 4122 0.02 0.31 0.42 110204 102819 105487 0.02 0.12 0.11

GB 2012 4003 4642 3761 0.03 0.14 0.20 94025 94040 87520 0.03 0.08 0.12

GB 2013 3562 4049 4812 0.03 0.09 0.24 54683 49671 76587 0.03 0.29 0.15

GB 2014 6199 5863 7279 0.03 0.34 0.48 75805 73495 69747 0.03 0.13 0.22

GB 2015 26797 20058 0.03 0.16 179408 144151 0.03 0.14

MAB 2012 4166 4902 4017 0.03 0.13 0.21 50574 49196 49418 0.04 0.12 0.10

MAB 2013 5064 4611 4066 0.05 0.07 0.12 62315 61485 59456 0.04 0.13 0.10

MAB 2014 5953 6459 4020 0.03 0.10 0.17 97756 91830 64400 0.04 0.08 0.12

MAB 2015 23884 20988 9906 0.02 0.20 0.12 122206 126697 98467 0.02 0.06 0.09
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Fig. 8. Estimated scallop biomass (mt/km2) on (a) GB and (b) MAB in 2015 based on HabCam data using GAM1 OK method. The observations of

scallops (black circles; area proportional to g/m2) are also shown.
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because the variogram estimates of the random component

of the spatial variation are theoretically biased. Generalized

least squared and residual maximum likelihood-empirical

best linear unbiased predictors are the two potential solu-

tions (Lark et al. 2006). However, Kitanidis (1993) and Min-

asny and McBratney (2007) showed that while these

methods are theoretically preferable to RK, they did not sub-

stantially improve model predictions.

The spatial autocorrelation inherent in the data can be

handled in the model-based methods by incorporating the

spatial structures into modeling framework using, e.g., krig-

ing or Gaussian random fields. However, this can be a prob-

lem for design-based estimators because the samples are not

randomized. Even after the samples were aggregated into

stratified segments, successive segments in each stratum

were still somewhat correlated. The positive correlation

between successive observations causes the na€ıve variance

estimator of the sample mean, which assumes the samples

to be independent, to be biased low, with the degree of

underestimation depending on the strength of the correla-

tion (Cochran 1977). Williamson (1982) suggested using the

cluster sampling variance estimators (Hansen and Hurwitz

1953), but this method is an approximation and only effec-

tive when the CV for the cluster is lower than 0.2. Because

more than half of the CVs of segments of the HabCam data

were larger than 0.2 for most years, we still used the na€ıve

variance estimates for this study. Even though the tracks

were carefully segmented to break down the spatial autocor-

relation, the simulation results indicated that the sample

variance was still underestimated.

The simulations indicated that the design-based estimator

(SM) performed as well or even better than the best model-

based estimates when the study area is well-stratified. How-

ever, because the higher density central portion was sampled

at a higher intensity than the lower density areas, incorrect

stratifications (i.e., making the central stratum too wide or

too thin) will cause the stratified mean to be biased high.

Seriously inaccurate stratifications that are not consistent

with the survey design resulted in biased and imprecise esti-

mates that were worse than almost all the model-based esti-

mates. This could be avoided by surveying all areas at the

same rate, but at the cost of reduced precision since more

time would be spent in low density areas that contribute lit-

tle to the overall mean.

In practice, SM estimates generally agreed well with the

GAM 1 OK model-based estimates, except for two cases,

where the SM estimates were 20–40% higher than those

from GAM 1 OK. Most of the survey transects in these cases

were placed in the areas with high densities of scallops with

few in the marginal habitats, which made it difficult to prop-

erly stratify the area. Influences of stratification on design-

based estimates have been documented in several studies.

For example, Brandt et al. (1991) showed a 20% difference

for horizontally stratified estimates and vertically stratified

estimates for abundance estimates based on acoustic data for

pelagic fish in Lake Michigan.

Our model-based and SM estimates from HabCam data

generally agreed well with the estimates from the dredge

data, with the exception of MAB in 2015, where HabCam

estimates were substantially higher than the dredge esti-

mates. A very large year classes of juvenile scallops were

observed that year (Figs. 7 and 8). Dredge efficiency may be

reduced in the presence of these high densities, thereby

inducing underestimates in the dredge survey.

Our results indicate that RK using GAM models, with a

relatively short aggregation length, is an accurate and precise

method to estimate HabCam data or other similar data sets.

The stratified mean approach is also effective provided that

the (post) stratification can be done precisely, for example if

accurate stratification can be built into the survey design.

Using OK alone is not recommended if there are substantial

large-scale trends in the data.

Table 5. Summary of difference in RBias and RRMSE for mean biomass and abundance estimates by population type, relative to
0.75 km segment length.

Population type

Biomass Abundance

Diff. RBias Diff. RRMSE Diff. RBias Diff. RRMSE

First-order effect Second-order effect 1.5–0.75 2.25–0.75 1.5–0.75 2.25–0.75 1.5–0.75 2.25–0.75 1.5–0.75 2.25–0.75

Narrow Large Agg. (noise) 0.0011 0.0076 0.0017 0.0092 0.0049 0.0119 0.0064 0.0210

Wide Large Agg. (noise) 0.0039 0.0066 0.0056 0.0089 0.0049 0.0124 0.0035 0.0165

Narrow Small Agg. (noise) 0.0067 0.0193 0.0085 0.0273 0.0069 0.0196 0.0131 0.0273

Wide Small Agg. (noise) 0.0056 0.0144 0.0077 0.0185 0.0055 0.0145 0.0062 0.0144

Narrow Large Agg. 0.0076 0.0185 0.0088 0.0262 0.0099 0.0182 0.0089 0.0212

Wide Large Agg. 0.0104 0.0208 0.0125 0.0236 0.0093 0.0172 0.0071 0.0138

Narrow Small Agg. 0.0177 0.0322 0.0217 0.0436 0.0234 0.0375 0.0199 0.0348

Wide Small Agg. 0.0135 0.0260 0.0198 0.0356 0.0117 0.0184 0.0108 0.0158
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