The Northeast Regional Habitat Assessment: A collaborative, multi-disciplinary project to develop decision support products for marine fish habitat management

Michelle Bachman, New England Fishery Management Council, NRHA Inshore Team Co-Lead Jessica Coakley, Mid-Atlantic Fishery Management Council, NRHA Coordinator, Inshore Team Co-Lead Chris Haak, Monmouth University/NOAA Northeast Fisheries Science Center, NRHA Post-Doc Tori Kentner, Mid-Atlantic Fishery Management Council, NRHA Spatial Ecologist Laurel Smith, NOAA Northeast Fisheries Science Center, NRHA Offshore Team Lead

NEFMC and MAFMC Scientific and Statistical Committees Sub-Panel June 1, 2022 - Via Webinar

Terms of Reference for today's review

- 1. Review the approved NRHA workplan and the related fish habitat science products under development, including decision support tools.
- 2. Consider the modeling goals, methods used, and inferences made from the single species and community level basis function models. Provide input on whether:
 - a) Species responses to predictor variables conform with what would be expected given a species' biology, physiology and/or ecology.
 - b) Species' predicted spatial distributions are consistent with expectations and other sources of data.
 - c) Estimated between-species relationships (i.e., spatiotemporal correlations in their presence/absence or abundance) make sense from an ecological perspective.
 - d) Identify additional work that would improve analysis or interpretation of results.

- 3. Consider and comment on the overall utility of NRHA, including the use of specific products in stock assessment, habitat management and conservation (including Essential Fish Habitat and Habitat Area of Particular Concern designations), and ecosystem approaches for the Councils.
 - a. Is the work sufficient and appropriate to support the habitat and ecosystem needs of both Councils?
 - b. Is there additional work, enhancements to NRHA that would improve its utility?
- 4. Are there alternative ways to present and communicate the data and analyses to various end-users (Councils, assessment scientists, stakeholders and public, etc.) more effectively?

Assessment overview

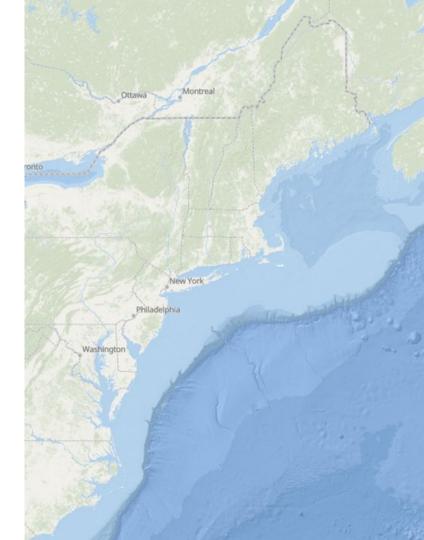
Goals, scope, and contributors

Goal: To describe and characterize estuarine, coastal, and offshore fish habitat distribution, abundance, and quality in the Northeast.

Four actions were identified as necessary to meet this goal:

1) Inshore fish habitat assessment

- a) Fish distribution and abundance
- b) Habitat distribution, status, and trends
- 2) Habitat vulnerability including response to changes in climate,
- 3) Spatial descriptions of species habitat use in the offshore area, and,
- 4) Habitat data visualization and decision support tools.


Geographic Scope: Northeast U.S.

South to north

North Carolina/South Carolina boundary to the western end of the Scotian Shelf and includes the Mid-Atlantic Bight, Southern New England, Georges Bank, and the Gulf of Maine.

Inshore to offshore

Mean high water including estuaries to the shelf-slope break

Focus Species (65+, important to managers)

- **Mid-Atlantic Council:** Atlantic and chub mackerel, butterfish, longfin and shortfin squid, surfclam, ocean quahog, summer flounder, scup, black sea bass, bluefish, golden and blueline tilefish, spiny dogfish
- New England Council: Cod, cusk, haddock, pollock, Acadian redfish, plaice, halibut, winter flounder, witch flounder, yellowtail flounder, wolffish, windowpane, ocean pout, offshore, red, and white hake, monkfish, Atlantic herring, salmon, skates (seven species), red crab, sea scallop
- Additional Atlantic States Marine Fisheries Commission (ASMFC): Eel, lobster, croaker, menhaden, striped bass, Atlantic sturgeon, black drum, cobia, horseshoe crab, Jonah crab, northern shrimp, red drum, shad and river herring, Spanish mackerel, spot, spotted seatrout, tautog, weakfish, coastal sharks
- Highly migratory with Habitat Areas of Particular Concern (HAPC) designations: Sandbar shark, dusky shark

Project teams and partners

- Project coordination/leads: Michelle Bachman, Jessica Coakley, Chris Haak, Tori Kentner, Laurel Smith
- Inshore team members: Bryan DeAngelis, Stephen Faulkner, Zack Greenberg, AK Leight, Dave Packer, Mark Rousseau, Eric Schneider, Alison Verkade
- Offshore team members: Rich Bell, Kevin Friedland, Rob Latour, Kathy Mills, Ryan Morse, Dave Packer, Marta Ribera, Vince Saba, David Stevenson, Marek Topolski, Harvey Walsh
- Habitat Climate Vulnerability Assessment: Jon Hare, Mike Johnson, Mark Nelson, Emily Farr, others
- NRHA/FSCVA/HCVA Crosswalk: Gavin Fay, Madeleine Guyant, NRHA and HCVA PIs, Mike Johnson, Tauna Rankin, Wendy Morrison
- **Regional data portal teams** at MARCO and NROC, also may collaborate with NOAA DisMap

Summary of products

Assessment Products at a Glance

Data inventory

- Catch data from state and federal fisheries-independent surveys; including comparison table
- Environmental datasets (used as model covariates)
- One page metadata document for each survey or data set

Habitat use

- Species profiles: Brief summary of life history and habitat use for each focus species Stage-based, single species and joint distribution models

Climate vulnerability

Species-habitat matrix and climate vulnerability narratives

- Habitat data visualization and decision support tools NRHA Data Explorer: R-Shiny application used to show trends in species distribution and abundance at state and regional scales, and to share other products and documentation
 - Working with partners at Mid-Atlantic Ocean Data Portal, Northeast Ocean Data Portal, and possibly NOAA DisMAP to share selected products

Scientific publications

Community-level Basis Function Modeling methods paper and R package; others in development

Data inventory and metadata library

- Worked with project teams and partners to identify data
- Focused on data sets useful for modeling
- Metadata documents provide caveats, contacts for access and more information
- Most of the fishery independent survey data viewable on **NRHA** Data Explorer
- Many applications and potential users

В	С	D	E	
Region	Inshore/Offshore	Source	Туре	Data
Entire Atlantic Co	Offshore	NOAA, University of	Point	bottom
	Offshore	NOAA		surface
Global	Offshore	NOAA	gridded	Surfac
Global	Offshore	COAPS	gridded	3D Hig
Chesapeake Bay	Inshore/Offshore	VIMS/NOAA	gridded	surface
	Offshore	NOAA		High-re
	Offshore	NOAA		Bottom
US	Inshore	NOAA	shapefile	Salinit
Global		NASA		ocean
NC to Maine	Offshore	NOAA	spredshe	sufrace
US		USGS		realtim
Chesapeake Bay	Inshore	Chesapeake Bay P	physic	
Global Inshore/Offshore Marine Conservatic shap		shapefile	bottom	
Gulf of Maine	Inshore	Fish and Wildlife Se	gridded	Salinity
	Region Entire Atlantic Co Global Chesapeake Bay US Global NC to Maine US Chesapeake Bay Global	Region Inshore/Offshore Entire Atlantic C Offshore Offshore Global Offshore Global Offshore Chesapeake Bay Inshore/Offshore Offshore Offshore Offshore Offshore Offshore Offshore US Inshore Global Offshore US Inshore Clobal Offshore US Inshore Global Offshore US Inshore/Offshore US Inshore Global Offshore	Region Inshore/Offshore Source Entire Atlantic C(Offshore NOAA, University of Offshore NOAA Global Offshore NOAA Global Offshore NOAA Global Offshore NOAA Global Offshore NOAA Offshore NOAA Offshore Chesapeake Baj Inshore/Offshore NOAA Offshore NOAA Global Inshore NOAA Offshore US Inshore NC to Maine Offshore US USGS Chesapeake Baj Inshore Chesapeake Bay P Global Inshore/Offshore	Region Inshore/Offshore Source Type Entire Atlantic C(Offshore NOAA, University o Point Offshore NOAA Global Offshore NOAA gridded Global Offshore NOAA gridded Chesapeake Baj Inshore/Offshore VIMS/NOAA gridded Offshore NOAA gridded US Inshore NOAA NC to Maine Offshore NOAA US USGS Chesapeake Bay Inshore Chesapeake Bay P points Global Inshore/Offshore Marine Conservatic shapefile

Data Source USGS, University of Colorado and partners	Data_Type Grainsize, Percent Gravel, Sand, Mud (GSM)	Date Range 1960-2002	Data Resolution NA	<u>Data available online?</u> Yes 2 No		
Geographic Range JS Coast		efforts by many	tains data from small and entities—federal and state well as private and public	agencies, local authorities		
.J.	S	more than 300,0 deep sea, rivers from the USGS extended to ma comprehensive, Source data inc sampling equipr	00 data sites in U.S. wate , lakes, and estuaries. In u and other research groups dimize their density and relationally linked dataset ude surficial and subbotto	usSEABED, existing data a are processed and ability creating unified, is for mapping and analysis im data from physical d virtual sampling such as		
A.	13	In addition to quantified lab-derived data, the datasets of usSEABED also include estimated numeric values for house typical seabed characteristics—noted above—based on the extensive accumulation of word-based data in U.S. waters. These data are rich in information but were previously difficult to quantify, map, plot, or use in comparative analyses or models.				
database, dbSEABED is a applies fuzzy set theory to biological data. Sediment descriptions, photos, and standard numeric data fro	a datasets into a standardized a data-mining program that marine geological and s including core logs, sample videos, as well as the more m a laboratory were classified	single phrases- considered as a relative weight t values of texturs implications of r Halimeda—are		atical equation that is izzy set theory assign tion, and estimate the haddition, the textural is 'broken shells' or of grain-size parameters.		
sing Folk and Shepard sy comparisons are made be vord-based outputs as a g lassification. The goal is i one phi size.	tween lab-based and	The resulting numeric data, now useable in a GIS or model, should be considered "fuzzy"; that is, they give an approximation—not a rigorous measurement—of the assessed values.				

Some small additions have been made but overall usSEABED has not been updated since 2002. Absences cannot be assumed because data is based on observation records. Additionally, much of the dataset is based on descriptive data so classifications are estimates and not exact measurements of grain size. Lastly, due to limitations in sample gear usSEABED does a poor job representing larger sediment such as cobbles, boulders and bedrock outcrops.

Data Access

usSEABED data is available for download and is broken into three regions, Pacific Coast, Gulf of Mexico and Caribbean and Atlantic Coast, Digital data catalog: https://coastalmap.marine.usgs.gov/national/usseabed/data.html The sediment data sources included in usSEABED: https://www.usgs.gov/data-tools/usseabed-data-sources Contact: Brian Buczkowski Woods Hole Coastal and Marine Science Center bbuczkowski@usgs.gov 508-457-2361

Buczkowski, B.J., Reid, J.A., Schweitzer, P.N., Cross, V.A., and Jerkins, C.J., 2020, usSEABED--Offshore surficial-sedment database for samples collected within the United States Exclusive Economic Zone: U.S. Geological Survey data release, https://doi.org/10.5066/P9H3LGWM

Trawl Survey Comparison

	A	В	C	D	E	F	G	Н	1	J	К	L	М
	State	Survey Name	Survey Location	Gear Type	Mesh Size	Survey Design	Headrope (ft)	Footrope (ft)	Tow Duration/Speed	Time of Year	Years Surveyed	NRHA Years	Strata & Stations
	Maine	ME/NH Inshore Trawl Survey	ME/NH Coastal Waters	Bottom Trawl	2 inch with 1 inch cod end liner	Stratified random plus fixed stations	57	70	20 min @ 2.2-2.3kts	Bi-annual for 5 weeks starting first	2000-ongoing	2000-2019	20 total: 4 depth strata to 12 mile
8	Massachusetts	MA Inshore Trawl Survey	Coastal	Bottom Trawl	3.5 inch mesh wings 25 inch mesh belly, 0.25 inch	Stratified random	39	51	20 min @2.5kn	May (Spring) & Sept (Fall)	1978-ongoing	1978-2019	Since 1982, stations have been assigned
6	Rhode Island	Narragansett Bay Monthly Trawl	Narragansett Bay	Bottom Trawl	4.5 inch mesh 2" cod end, 0.25 inch liner	Fixed	40	55	20 min @2.5kn	Monthly	1990-ongoing	1990-2019	13 fixed stations chosen to represent
	Rhode Island	Rhode Island Seasonal Trawl	Coastal	Bottom Trawl	4.5 inch mesh 2" cod end, 0.25 inch liner	Fixed and stratified random	40	55	20 min @2.5kn	Monthly & Seasonal Spring (April-May)	1979-ongoing	1979-2019	12 montly fixed stations & 14
	Connecticut	CT Long Island Sound Trawl Survey	Long Island Sound	Bottom Trawl	4 inch with 2 inch cod end, no liner	Stratified random	30	46	30 min@ 3.5 kts	1984 -1991: Monthly April-November	1984-ongoing	1984-2019	40 random stations sampled monthly,
	Connecticut	CT Small Mesh Trawl Survey	Long Island Sound	Bottom Trawl	2 inch with 0.25 inch cod end liner	Stratified random	30	46	30 min@ 3.5 kts	?	1991-93, 1996	-	<u>(4</u>)
	New York	NY Raritan Bay Survey	Hudson-Raritan Bay	Bottom Trawl	1.75 inch cod end, 1.375 Liner	Stratified random	28	34	10 min @ 2kts	Monthly (except May, Sept)	1992-1997	2	1.0
	New York	Peconic Estuary fishery trawl survey/	Peconic Bay	Bottom Trawl	.5 inch stretch mesh codend liner, 0.25 inch cod	Random	16	?	10 min @ 2.5 kts	Weekly, May-Oct	1985-ongoing	1987-2019	Allocation of stations is based on 77
	New York	Nearshore Ocean Trawl Survey	Atlantic Ocean from Breezy Point to Block	Bottom Trawl	1.00		1992			Year-round	2017-ongoing (10 year project)	2	
	New Jersey	NJ Delaware Bay Trawl Survey/ The	Delaware Bay	Bottom Trawl	1.5 inch with 0.5 inch liner	Fixed	16	N/A	20 min @ 2.1kts	Monthly April to October	1991-ongiong	1991-2019	11 stations within the bay for a yearly
	New Jersey	NJ Trawl Survey/ New Jersey Ocean	Coastal Waters	Bottom Trawl	4.7 & 3 inches, 0.25 inch bar mesh cod end liner	Stratified random	82	100	20 min	1988/89 sampling was Feb, April, June,	1988-ongiong	1988-2019	To reduce potential sampling bias, each
	Delaware (16ft Trawl)	DE 16ft Trawl Survey/ Delaware	Delaware Bay and Delaware River	Bottom Trawl	1.5 inch, 0.5 inch liner	Fixed	17	21	10 min @ minimum hp - tow against the	April - October (monthly)	1980-ongoing	1980-2019	The sampling design is a fixed site grid on
	Delaware (30ft Trawl)	DE 30ft Trawl Survey	Delaware Bay	Bottom Trawl	3 inch wings & body, 2 inch cod end	Fixed	30	40	20-30 min @ minimum hp	March - December (monthly)	Since 1966 (1966-1971,	1966-2019	Nine fixed stations throughout the
	Maryland	Coastal Bays Fisheries	Coastal Bay	Bottom Trawl	0.25 inch cod end	Fixed	?	16	6 min @ 2.5-2.8kts	April-Oct (monthly)	1972 - ongoing but standardized	1989-2019	Trawl sampling was conducted at 20
	Virgina	VIMS Chesapeake Bay Juvenile Fish and	Lower Chesapeake Bay and major	Bottom Trawl	1.5-inch, 0.25 inch liner in cod end	Fixed and stratified random	20	?	5 min @ 2.5kts	Monthly April - Dec	1955-ongoing	52	Sampling in the Bay occurred monthly
	Virginia	ChesMMAP:Chesape ake Bay Multispecies	Mainstem, Ches Bay (ChesMMAP)	Bottom Trawl	4.72 & 2.36 inch mesh with 1 inch cod end liner	Stratified random	32.7	36.5	20 min @ 3 kts	March, June, Sept & Nov	2002-ongoing	2002-2015	The coverage includes 80 stations
	Virginia	NEAMAP: NorthEast Area Monitoring and	Coastal, RI to NC (NEAMAP)	Bottom Trawl	4.72 & 2.36 inch mesh with 1 inch cod end liner	Stratified random	80	88.6	20 min @ 2.9-3.3 kts	April-May and Sept-Oct	2007-ongoing	2007-2019	150 stations broken down into 15 regions
	North Carolina	NCPamlico Sound Survey (Program	Pamlico Sound	Bottom Trawl	1.875 inch strech mesh, 1.5 inch cod end	Stratified random	31	34	20 min @ 2.5 kts	June and Sept (also March and Dec prior	1987-ongoing	1987-2019	Each trawl sweeps an area of approx.
	North Carolina	NC Juvenile Trawl Survey (Juvenile	Albemarle Sound and tributaries	Bottom Trawl	4 inch in wings to 1/8 inch tail bag	Fixed	18	?	10 min @ ?	May and June (Feb-Nov prior to	1971-ongoing	52	Fixed. Some of the current stations
	North Carolina	Estuarine Trawl Survey /Nursery	Estuarine	Bottom Trawl	.25 inch bar with .125 inch bar tail bag	Fixed	10ft		1 min calibrated to span 75 yards	Core stations: May and June	1971 - ongoing	1972-2019	105 stations in shallow water areas
	Offshore/ Northeast U.S.	NMFS bottom trawl survey	Northeast U.S. Continental Shelf	Bottom Trawl	4.72 & 2.36 inch mesh, 1 inch cod end liner	Stratified Random	79.5	88.6	20 min @ 3 kts	Spring & Fall	1963-ongoing	1963-2019	Stratified random sampling design.

Climate Vulnerability Assessment Crosswalk

- Synthesis of information from NOAA's FSCVA, HCVA, ACFHP species-habitat matrix, and EFH designations
- <u>Matrix</u> that indicates species' dependency on (or association with) habitat types, by life stage
- <u>Narratives</u> that describe species and habitat climate vulnerabilities and habitat dependencies, in text and tables
- Will highlight critical/most concerning intersections of species and habitat climate vulnerability
- Products will be shared via NRHA Data Explorer

		Life Stage Dependency				
Habitat Type	HCVA Climate Vulnerability Rank	Egg/ Larvae	Juvenile/ YOY	Adult	Spawning Adult	
	Marine intertidal rocky bottom- High (juveniles/YOY only)					
Firm Hard Bottom	Estuarine intertidal rocky bottom- Moderate (juveniles/YOY only)		н	н	н	
	Estuarine subtidal rocky bottom- Low Marine rocky bottom					

Atlantic Cod

Species Climate Vulnerability:

Atlantic cod (Gadus morhua) is projected to be moderately vulnerable to climate change due to exposure to changing ocean temperature and acidification and sensitivity in terms of stock status (overfished with overfishing occurring), slow population growth rates, stock status, and specific early life history requirements (e.g., dependence on specific circulation patterns for larval retention and specific nursery habitats). Atlantic cod are projected to be negatively affected by climate change caused by resulting decreases in recruitment and suitable habitat (Hare et al. 2016). Temperature plays an important role in Atlantic cod recruitment, growth, and survival, and several studies have reported declines in populations in the southern extent of the range due to projected increased temperature (Drinkwater 2005; Fogarty et al. 2008; Pershing et al. 2015; Planque and Fredou 1999).

Habitat Dependence:

A number of estuarine and marine habitats are important to Atlantic cod. These include firm hard bottom habitat (corresponding to the HCVA categories of marine intertidal rocky bottom, marine rocky bottom <200 m, estuarine intertidal rocky bottom, and estuarine subtidal rocky bottom) and loose coarse bottom habitat (corresponding to the HCVA categories of marine intertidal rocky bottom, marine rocky bottom <200 m, estuarine utilidal cocky bottom addition loose actuarine utilidal cocky bottom additional loose actuarine utilidal cocky bottom <200 m, estuarine utilidal cocky bottom <200 m, addition loose actuarine utilidal cocky bottom addition loose actuarine utilidal cocky bottom <200 m, addition loose actuarine utilidal cocky bottom <200 m, addition loose actuarine actua

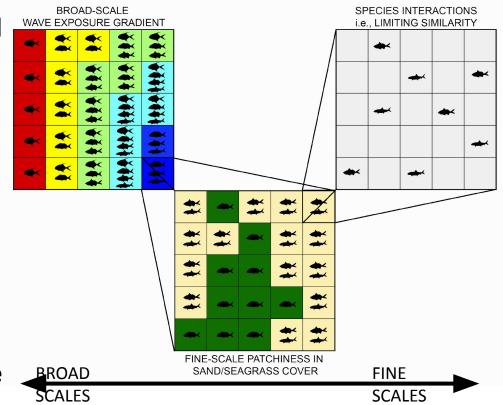
Modeling Framework

Characterizing Habitat Use

Characterizing habitat use: A comprehensive strategy

- **Stage-based approach** partitioning spp. into distinct classes based on ontogeny (e.g., size or maturity)
 - Better resolution of habitat shifts?
 - Improved inferences about species relationships?

• Single Species & Joint SDMs

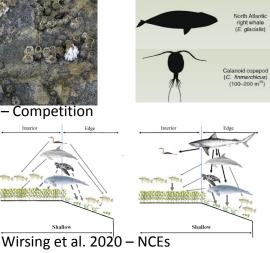

- Using GAMs and a novel spatiotemporal Joint modeling approach (CBFM)
- Comparison of Joint vs single-species spatiotemporal GAMs

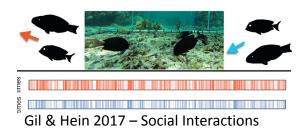
• Dynamic & Ecologically Relevant Covariates

- Temporally varying predictor variables that reflect dynamic nature of systems
- Predictors with direct consequences for ecological function of animals

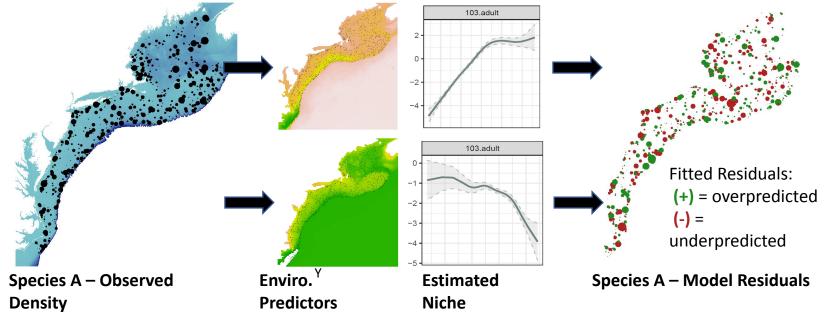
Habitat Use & Community Ecology

- Habitat use patterns are shaped by multiple processes:
 - "Environmental filtering" -Are abiotic conditions compatible with the limitations of the animal?
 - Biotic interactions Animals act upon one another, influencing their use of space
 - Induce (+) or (-) correlations in spp pres/abs or abundance

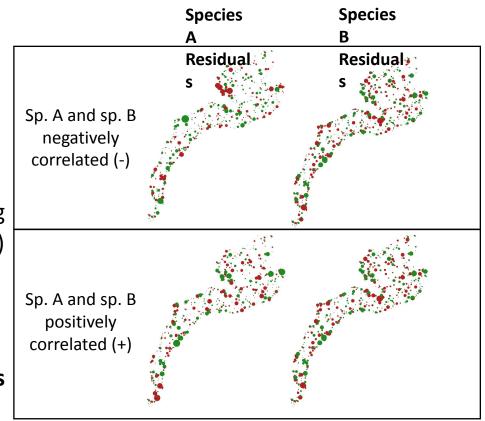



How Can Biotic Interactions Affect Habitat Use?

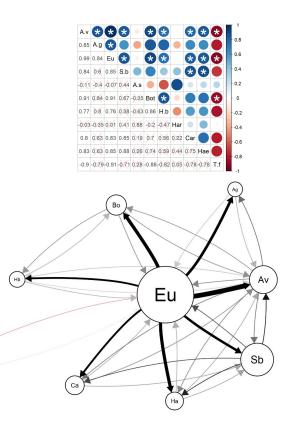
- Competition: (-) Species with similar niches may exclude each other
- **Migratory coupling: (+)** Movement of a consumer is driven by that of its prey
- Non-consumptive effects: (-) "Fear" of predators alters use of space by prey
- Social interactions: (+) Information exchange b/w species that share common predators or prey
- Cascading effects can "scale-up" to the ecosystem level


Furey et al. 2018 – Migratory coupling

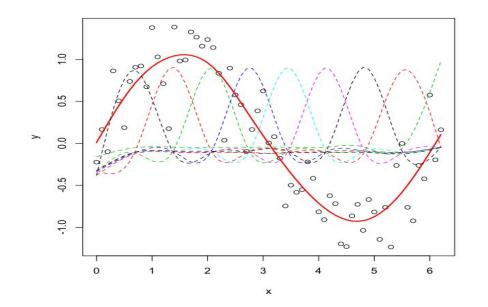
SDMs: A Mechanistic View of Habitat


• Species Distribution Models (SDMs) estimate the habitat "niche" of organisms by relating observed densities to measured environmental predictor variables

"Environmental filters"


Joint SDMS: Making More of Model Residuals

- In single-species SDMs, residuals = "error"
- In a multi-species context, residual patterns across species contain information about underlying processes (i.e., missing predictors, dispersal, interactions)
- Joint SDMs model residual covariance & exploit it for joint predictions = more realistic estimates of species assemblages


Joint-species distribution models (JSDMs)

- JSDMs model groups of species together, simultaneously estimating:
 - 1. Species-environment relationships ("environmental filtering")
 - 2. Species covariation with each other (interactions or "missing" predictors)
- Improved predictions & ecological insights
 - Better propagation of error/uncertainty
 - Sharing information across spp to enhance estimation
 - Joint predictions that include spp covariance
- Computationally expensive not feasible for large datasets

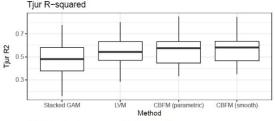
Community-Level Basis Function Model (CBFM)

• **GAMs** model complex species relationships with environmental variables as a linear combination of basis functions ("building blocks")

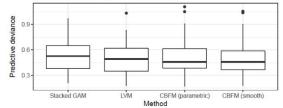
 CBFM exploits the same "machinery" that GAMs use to model species responses to the environment, but also to (flexibly and efficiently) model covariance in space and time


CBFM: Development & Proof of Concept

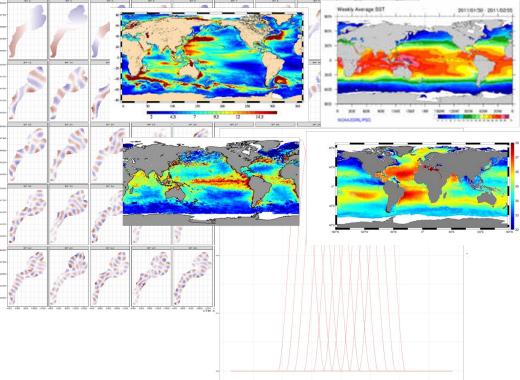
- Methods manuscript (MEE)
 - Simulation studies
- R package
 - Github repository
 - June Public release GitHub


Spatio-Temporal Joint Species Distribution Modeling: A Community-Level Basis Function Approach

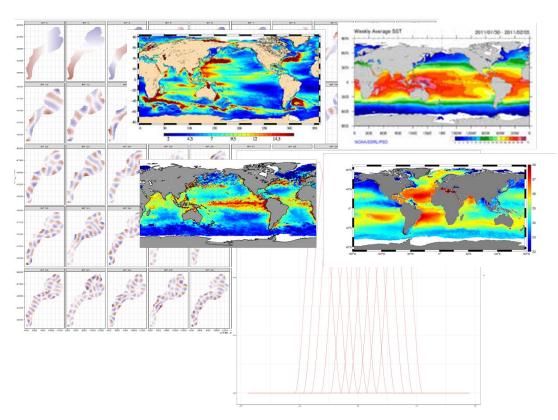
Francis K.C. Hui*1, David I. Warton², Scott D. Foster³, Nicole A. Hill⁴, and Christopher R. Haak⁵


¹Research School of Finance, Actuarial Studies and Statistics, The Australian National University, Canberra, Australia ²School of Mathematics and Statistics, The University of New South Wales, Sydney, Australia ³Data61, Commonwealth Scientific and Industrial Research Organization, Hobart, Australia ⁴Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia ⁵Northeast Fisheries Science Centre, National Oceanic and Atmospheric Administration, Highlands NJ, USA

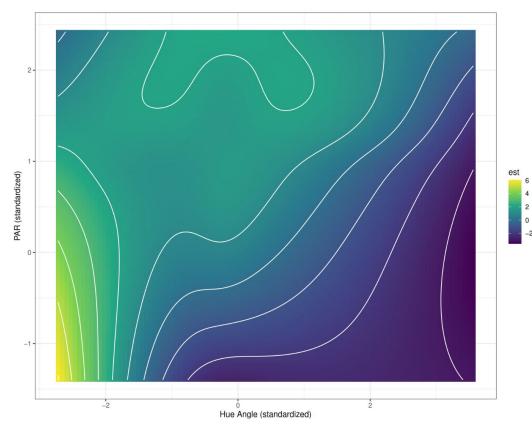
 Performs as well or better than existing methods, but with considerable speed improvements



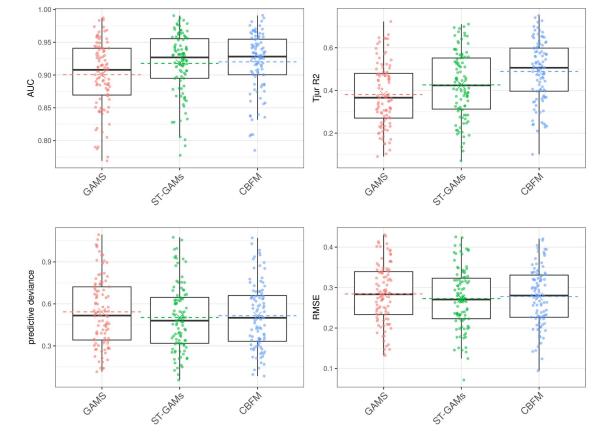
Predictive deviance per observational unit


NRHA Application

- Abundance of 97 spp-stages from NMFS-BTS (Spring & Fall)
 - Demersal & pelagic sp., managed, common, & prey
 - Training 2000-2014 (n > 9000)
 - Testing 2015-2019 (n > 3000)
- "Hurdle" Model
 - Binomial pres/abs
 - ZTNB counts
- Combined Spring & Fall surveys

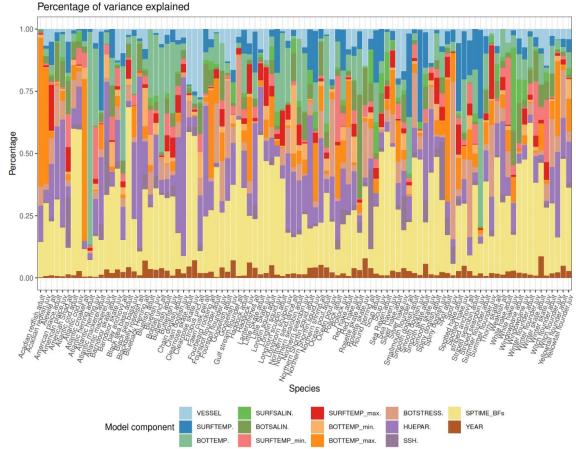

NRHA Application

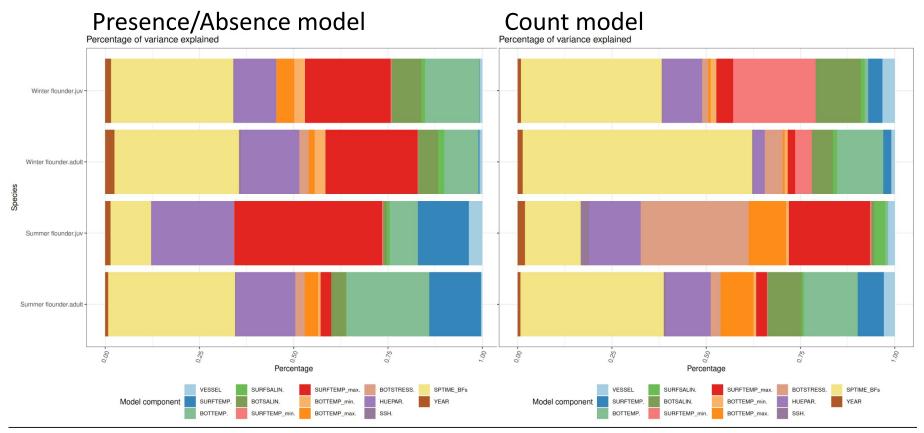
- 11 enviro Predictors (+ vessel)
- · Surface & Bottom temp (monthly means)
- Surface & Bottom Salin (monthly means)
- · Annual min & max surface temps
- · Annual min & max bottom temps
- · Sea Surface height (monthly mean)
- · Bottom stress (static, hydrodynamic)
- PAR (monthly mean, optical)
- Hue angle (monthly mean, optical)


NRHA Application: Covariates

- Correlates of depth:
 - Underwater optical environment
 - Intensity of wave and current driven water movement
- Optical parameters (te)
 - PAR = Light intensity
 - Hue Angle = Light color (red-blue spectrum)
- Bottom stress
 - 95th quantile (extreme events)

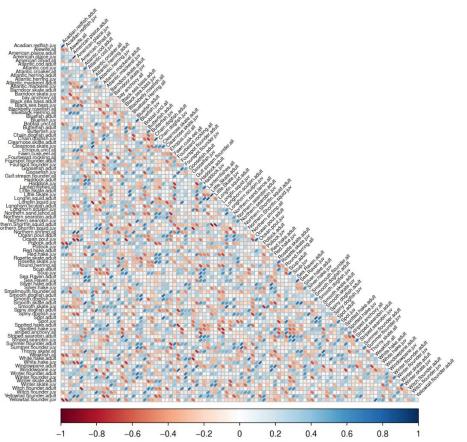
NRHA Application: Performance


- Out-of-sample prediction P/A
 - Median AUC = 0.93 (range from 0.78 - 0.99)
 - Median Tjur R^2 = 0.50 (0.1 - 0.75),
 - Median RMSE = 0.28 (0.09 - 0.42)
- Outperforms stacked single-species S-T GAMS

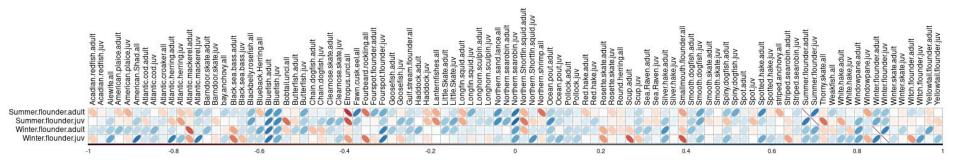

Out of Sample Prediction - PRES/ABS

CBFM Outputs: Covariate Importance

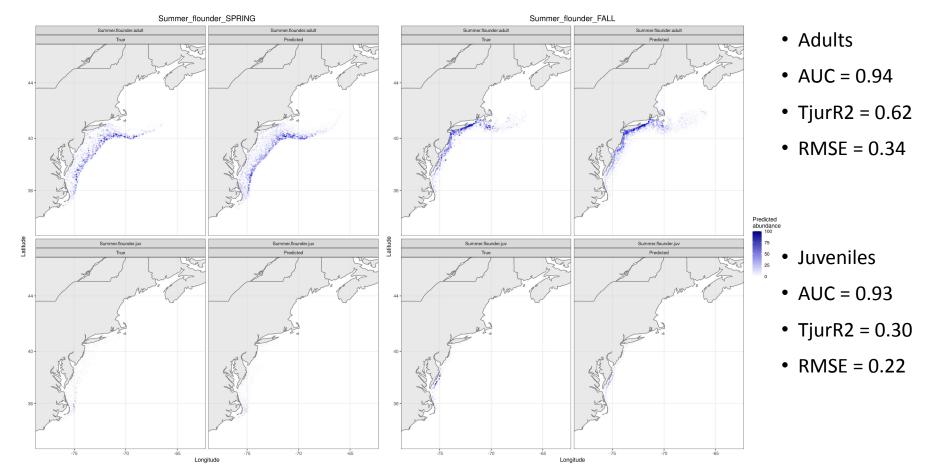
- % variance explained by each predictor, and spatial & temporal BFs
- Which factors are most influential in driving habitat use of spp.



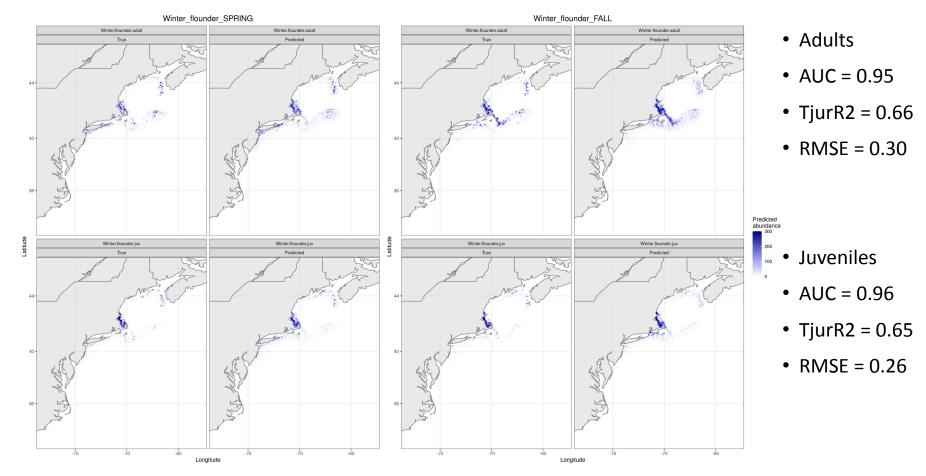
Covariate Importance: Flounders


CBFM Outputs: Residual/Partial Correlations

- Correlation among spp. that is not explained by measured predictors
 - Evidence of biotic interactions or responses to "missing" covariates?
- Overall, strong positive corrs b/w adults and juvs may evidence a phylogenetic signal or dispersal limitations

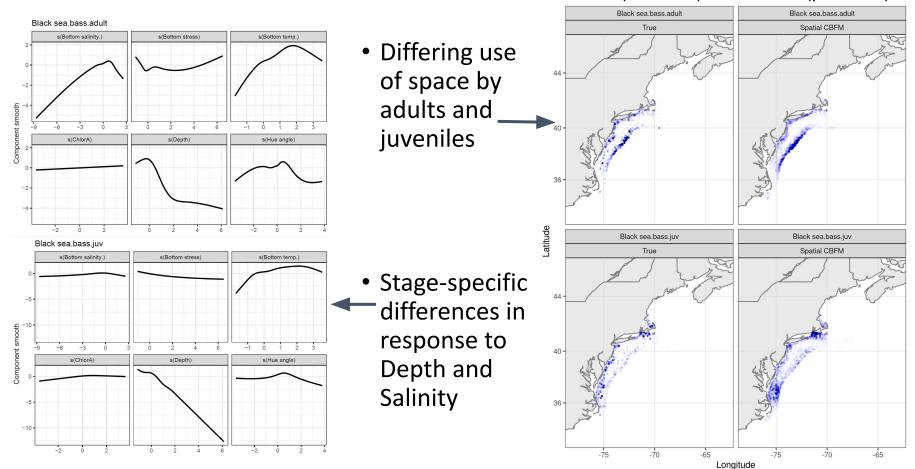

Partial Correlations: Flounders

• Spatio-temporal correlations b/w species after accounting for the effect of covariates (i.e., environmental preferences)



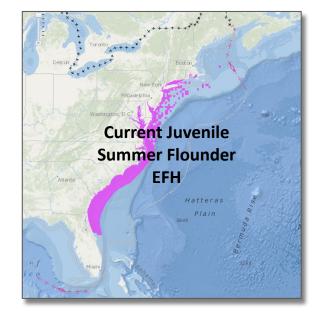
- + Corrs b/w adults and juv within species
- + Corrs w/ Bluefish and Northern Searobin?
- - Corrs w/ Etropus & Smallmouth flounders

Predictions: Summer flounder



Predictions: Winter flounder

Prediction: Black sea bass (stages) TRUE (observed)


Model (predicted)

Selected applications for NRHA products

Essential Fish Habitat application

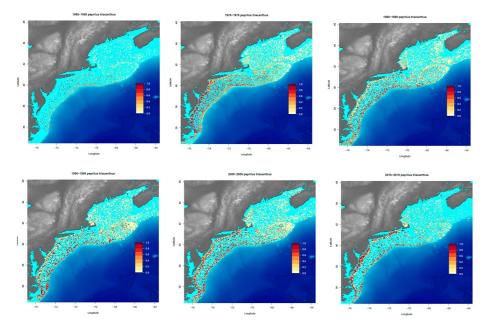
- NRHA provides more specificity on which environmental factors influence species distribution. Will benefit:
 - EFH text descriptions
 - Habitat area of particular concern (HAPC) designations
- Spatial model outputs will serve as a robust foundation for EFH maps
 - May still need to incorporate additional information from outside NHRA geographic scope
- Information about spatial shifts in habitat, e.g., under different climate scenarios
 - Possible to include in EFH designations?
- Consider an adaptive approach and/or ways to automate EFH designation updates

Juvenile summer flounder EFH designation (CURRENT): North of Cape Hatteras, EFH is the area which encompasses the top 90% of the area where summer flounder juveniles are found in the MARMAP and NEFSC trawl surveys. South of Cape Hatteras, EFH is the nearshore waters (out to 50 miles from shore) of the Continental Shelf, from Cape Hatteras to Cape Canaveral Florida. Inshore, EFH is all the estuaries where summer flounder were identified as being present in the ELMR database, in the "mixing" and "seawater" salinity zones.

SOE application

- <u>2022 State of the Ecosystem</u> report includes a description of NRHA in Habitat Risks subsection
- Future SOE reports will expand on how managed species distributions have changed and may continue to change related to habitat and climate changes
- Included in annual SOE presentations to Councils

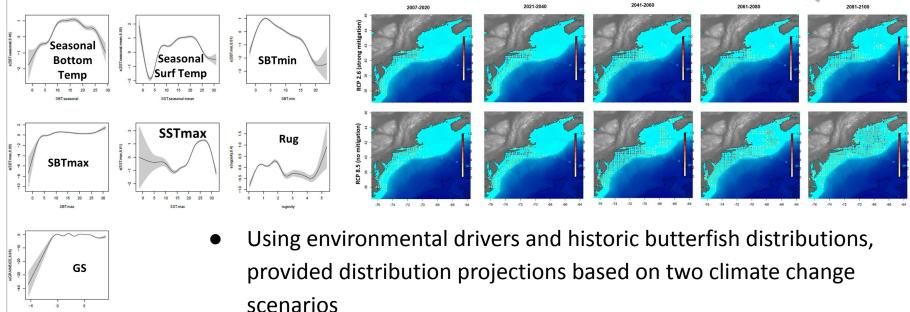
Habitat Risk Indicators: habitat assessments, harmful algal blooms, fishing gear impacts


Habitat Climate Vulnerability The Northeast Regional Marine Fish Habitat Assessment (NRHA) is a collaborative effort to describe and characterize estuarine, coastal, and offshore fish habitat distribution, abundance, and quality in the Northeast. This includes mapping inshore and offshore habitat types used by focal fish species, summarizing impacts of habitat climate vulnerability on these species, modeling predicted future species distributions, and developing a publicly accessible decision support tool to visualize these results. This is a three-year project led by the New England and Mid-Atlantic Fishery Management Councils in collaboration with many partners including NOAA Fisheries, and will be completed in July 2022¹¹.

As part of the NRHA work, climate vulnerability information from NOAA's Habitat Climate Vulnerability Assessment [37] and the Northeast Fish and Shellfish Climate Vulnerability Assessment [38]¹² is synthesized for approximately 70 species in the northeast region. In particular, winter founder, a species deemed highly vulnerable to climate change, is highly dependent on vulnerable habitats such as submerged aquatic vegetation, kelp, intertidal sand and mud, and tidal wetlands throughout New England and in the Mid-Atlantic. Details on highly vulnerable habitats with linkages to a variety of species, including which life stages have different levels of dependence on a particular habitat, are available in a detailed table¹³.

Stock assessment application

- Stock assessments have an ecosystem TOR, and NRHA products can be useful in addressing this
- In fall 2021 Tori provided a habitat paper to the working group for the research track butterfish assessment



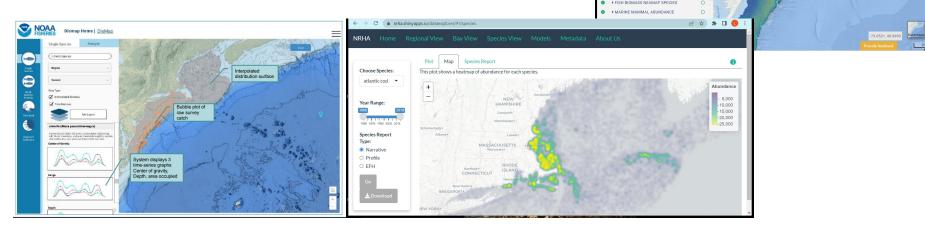
Additional TOR 1: Describe life history characteristics and the stock's spatial distribution, including any changes over time. Describe ecosystem and other factors that may influence the stock's productivity and recruitment. Consider any strong influences and, if possible, integrate the results into the stock assessment.

Stock assessment application

GRAINSIZI

Additional TOR 1: Describe life history characteristics and the stock's spatial distribution, including any changes over time. Describe ecosystem and other factors that may influence the stock's productivity and recruitment. Consider any strong influences and, if possible, integrate the results into the stock assessment.

Stock assessment application


- Regime shift work linking changes in butterfish health and recruitment to environmental indices
- These environmental drivers were used to determine the average recruitment time period for butterfish projections
- NRHA products designed to address these types of questions
 - \circ $\hfill \hfill \hf$
- Distribution and regime shift work will be applied to Atlantic mackerel in 2023

Additional TOR 1: Describe life history characteristics and the stock's spatial distribution, including any changes over time. Describe ecosystem and other factors that may influence the stock's productivity and recruitment. Consider any strong influences and, if possible, integrate the results into the stock assessment.

Publicly Available Data Portals

- Intent is to make NRHA products as widely available as possible
- Northeast Ocean Data Portal
- Mid-Atlantic Ocean Data Portal (MARCO)
- NMFS Distribution Mapping and Analysis Portal (DisMAP)
- NRHA Data Explorer (R-Shiny)

MARCO

SH BIOMASS NEESC SPECIE

NRHA Data Explorer Demonstration

Available here: https://nrha.shinyapps.io/dataexplorer

NRHA Home Regional View Bay View Species View Models Metadata About Us

Welcome to the Northeast Regional Habitat Assessment Data Explorer

This application was developed to share products from the Northeast Regional Marine Fish Habitat Assessment (NRHA) and provides toois to explore fish habitat data, with an emphasis on habitat use, at different regional scales and by diverse fish and shellfish species in the Northeast. For more info about our history and team see About Us.

Regional View This view summarizes fishery independent survey and fish habitat data at the Northeast regional scale. Specific surveys and year ranges can be selected to display species abundance in those surveys.	Bay View This view summarizes fishery independent survey and fish habitat data for inshore waters at a baylesituary scale. Specific surveys and year ranges can be selected to display species abundance in those surveys.	Species View This view provides a deeper dive into species-specific fishery independent survey data, as well as detailed reports on habitat use by species and vulnerability of the species and their habitat to climate change.	Model View This view provides outputs from spatiotemporal models that describe fish species distributions as a function of dynamic environmental factors, as well as species covariances with one another. Some of these outputs are	Metadata For each of the datasets considered for this habitat assessment, a metadata report was created that provides the data source, an overview of the data product, and information about data access.
			Informed by climate models to project how fish habitat use might be altered under different environmental change scenarios.	

*Datasets displayed on this site in summary format have associated caveats related to the collection of these data and their use. Please refer to the metadata inventory tab for additional details on each dataset, including contact information to obtain the source data. NRHA did not create the data and cannot guarantee its accuracy, or its suitability for use for other applications. NRHA encourages proper use and attribution of any datasets summarized on this site. Interested parties should directly contact the data providers noted in the metadata inventory for additional details on these data and their proper use.

Thank you! Questions?

<u>mbachman@nefmc.org</u> <u>jcoakley@mafmc.org</u> <u>tkentner@mafmc.org</u> <u>laurel.smith@noaa.gov</u> <u>chrishaak@gmail.com</u>